

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE [COMPUTER SCIENCE AND MATHEMATICS OPTION]

PHYS 823-COMPUTER APPLICATIONS IN PHYSICS RESEARCH PHYS 921-COMPUTER APPLICATIONS IN RESEARCH

STREAMS: MSC (SCI) BSC (COMP SCI \& MATHS)
TIME: 3 HOURS
DAY/DATE: THURSDAY 08/04/2018
2.30 P.M. - 5. 30 P.M.

INSTRUCTIONS

- Answer question 1 in section A and any other TWO from section B
- Marks are awarded for clear and concise answers
- Note that only Question ONE (Section A) and the first TWO attempted questions in section B will be marked.

SECTION A-COMPULSORY

QUESTION ONE-30 MARKS

(a) While stating the role of an algorithm in computer based systems design, give THREE of its desirable features
[4 Marks]
(b) Using a diagram, illustrate the five steps of processing a high level language program
[6 Marks]
(c) Write a script that prompts a user to enter his/her name, reads it and prints it on the screen
[4 Marks]
(d) Compilation is a key step when writing a computer program. Explain TWO reasons for compiling a high level language program
(e) Using an example in each case, explain TWO logic operators used in C programming
(f) Explain what a high level programming language is. Give FOUR examples of such Programming languages.

PHYS 823

PHYS 921
(g) Explain TWO ways of representing comments in C programming.
[4 marks]

SECTION B-ANSWER ANY TWO QUESTIONS FROM THIS SECTION QUESTION TWO [15 MARKS]

(a) While outlining what a loop is, explain the use of THREE loops in C programming language
(b) State TWO ways of presenting an algorithm
(c) Write a C program that prints the first 20 numbers of Fibonacci series

QUESTION THREE [15 MARKS]

A solution is required to find the single root for the equation $\mathbf{y}=\mathbf{x}^{\mathbf{2}} \mathbf{- 2 x} \mathbf{- 1}$ on the interval $x=-2$ to 2.
(i) Identify the input and output required in order to solve the problem
(ii) Draw a flowchart to the design of the algorithm that solves the problem
(iii) Implement the flowchart using C programming language

QUESTION FOUR [15 MARKS]

(a) Use the spreadsheet data shown below to answer questions that follow:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	
$\mathbf{1}$	$\boldsymbol{\tau}$		$\boldsymbol{\omega}$	$\boldsymbol{\theta}$	
$\mathbf{2}$	20	5	30		
$\mathbf{3}$	40	7	60		
$\mathbf{4}$	50	6	90		
$\mathbf{5}$	70	8	120		
$\mathbf{6}$	60	4	150		
$\mathbf{7}$	100	7	180		
$\mathbf{8}$	130	6	210		
$\mathbf{9}$	150	9	240		
$\mathbf{1 0}$	90	9	270		
$\mathbf{1 1}$	80	11	300		
$\boldsymbol{P}=\boldsymbol{\tau} \boldsymbol{\omega} \cos \boldsymbol{\theta}$					

(i) What formulae would you enter in cell D 2 to compute the value of \mathbf{P}
(ii) Explain how you would draw a $x-y$ graph of P against $\cos \theta$

PHYS 823

PHYS 921
(b) Write Linux commands to perform the following tasks.
i) Displays/prints output 'Hello' on the screen
ii) Prints the full path name of current working directory to the standard output

Marks]

iii) Displays a file content
[2 Marks]

QUESTION FIVE [15 MARKS]

Create scripts in Linux that perform the following functions.
(i) Ask the user for a filename and then open it for editing
ii) Displays number 1 to 10 automatically
iii) Takes an input from the user, and then it will create a file named after the user's input
[5 Marks]

