PHYS 821

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN PHYSICS

PHYS 821: LABORATORY TECHNOLOGY I

STREAMS: MSC (PHYS)

TIME: 3 HOURS

2.30 P.M. - 5.30 P.M.

DAY/DATE: WEDNESDAY 07/04/2021

INSTRUCTIONS:

- Answer ALL questions
- Do not write anything on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answer legibly and use your time wisely

QUESTION ONE (15 MARKS)

(a)	What is X-ray Powder Diffraction (XRD)?	[1 mark]				
(b)	Explain the basic principles of X-ray Powder Diffraction (XRD)	[4 marks]				
(c)	Outline the working of an X-ray diffractometer	[4 marks]				
(d)	Answer the following questions about body-centered cubic (bcc) structure with the lattice		lattice			
parameter "a".						
	(i) Obtain the volume of void, supposing the case where the spherical atoms of					
	radius r_A are arranged in each lattice point. Calculate also the porosity and					
	packing fraction [3 marks]					
	(ii) The position of the maximum void in this body centered cubic lattice is known					
	to be corresponding to the tetrahedral site $(\frac{1}{2}, \frac{1}{4}, 0)$, and to equivalent position.					

the radius of maximum sphere that fits to this space [3 marks]

PHYS 821

QUESTION TWO (15 MARKS)

(a) With an aid of Jablonski diagram, explain the basic principles of Fluorescence spectroscopy.Discuss the following in your explanation; [12 marks]

- (i) Absorption, emission and stokes shift
- (ii) Spectroscopic Transition Strengths and Quantum yields
- (iii) Lambert-Beer Law and Absorption Spectroscopy
- (iv) Temperature Effects on Absorption and Emission Spectra

(b) Mention how Forster Resonance Energy Transfer Technique (FRET) can be used. What makesFRET useful in *vivo* experiments? [3 marks]

QUESTION THREE (15 MARKS)

(a) What is the Hall effect and what is the significance of a positive Hall coefficient?

[4 marks]

(b) Derive the Hall Constant relation
$$R_H = \frac{1}{nq}$$
 [5 marks]

(c) A potential difference is applied between the ends of a strip of copper and a current of 100 A flows along its length. The strip is 20 cm long in the x-direction of a rectangular system of coordinates, 2 cm wide in the y direction and 1mm thick in the z-direction. A uniform magnetic field of 10 Wb/m² is applied across the strip in the positive y- direction and the hall EMF is found to be 5μ V. Derive;

(i) The magnitude and direction of the Hall field when the current flows in the positive x-direction

(ii) The concentration of free electrons [3 marks] (d) The hall coefficient and electrical conductivity of an n-type silicon are $\frac{-7.3 \times 10-5 m^3}{C}$ and $2 \times 10^7 mho/m$, respectively. Calculate the magnitude of the mobility of the electrons. [3 marks]

QUESTION FOUR (15 MARKS]

(a)	What is in-situ ellipsometry?	[2 marks]
(b)	What kind of sample preparations are required before doing ellipsometry?	[3 marks]
(c)	Can spectroscopic Ellipsometers measure absorbing films?	[2 marks]

PHYS 821

(d)	What factor should be considered when choosing a spectroscopic Ellipsometers?		
		[2 marks]	
(e)	w does spectroscopic ellipsometry compare to spectrophotometric measurements?		
		[2 marks]	
(f)	What is depolarization and how can it be measured?	[2 marks]	
(g)	What is Mueller-matrix?	[2 marks]	
