CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (PHYSICS)

PHYS 811: MATHEMATICAL PHYSICS

STREAMS: MSC (PHYS) TIME: 3 HOURS

DAY/DATE: TUESDAY 06/04/2021 8.30 A.M. – 11.30 A.M.

INSTRUCTIONS: Answer question ONE (Compulsory) and any other THREE questions

QUESTION ONE (15 MARKS)

a) Use Cauchy-Riemann conditions to show that $f(z)=z^2$ is analytic in the entire z-plane

[3 marks]

b) Show that the following four matrices form a group under matrix multiplication [4 marks]

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, C = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

c) Prove the following recurrence relation for Bessel function

$$J'_{n}(x) = \frac{-n}{x} J_{n}(x) + J_{n-1}(x)$$

Where the prime denotes the differentiation with respect to x

[4 marks]

Given:
$$J_n(x) = \sum_{r=0}^{\infty} (-1)^r \left(\frac{x}{2}\right)^{n+2r} \frac{1}{r!\sqrt{(n+r+1)}}$$

e) Find $\frac{dy}{dx} \wedge d^2y$ for $y = e^{-x^2}$ at the point x=0.05 from the data of the table given below

[4 marks]

X	$y=e^{-x^2}$	Δ	Δ^2	Δ^3	Δ^4
0	1.00000				
0.05	0.99750	-250			
0.10	0.99005	-745	-495		
0.15	0.97775	-1230	-485	+10	
0.20	0.96079	-1696	-466	+19	+9
0.25	0.93941	-2138	-442	+24	+5
0.30	0.91393	-2548	-410	+32	+8

QUESTION TWO (15 MARKS)

a) State and prove the residue theorem

[5 marks]

b) Evaluate the integral

$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

using the residual theorem

[10 marks]

QUESTION THREE (15 MARKS)

a) Construct the Green's function for the problem stated mathematically as

$$\frac{d^2y}{dx^2} - k^2y = f(x)$$

where f(x) is a known function and y satisfies the boundary conditions $y=(\pm \infty)$ [7 marks]

b) Define the shifting property of the Laplace transform and use it to find the Laplace transform of $e^{-x}\cos x$ [4 marks]

c) Obtain Rodrigues' formula for the Legendre polynomials

[4 marks]

QUESTION FOUR (15 MARKS)

a) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^2 + a^2\right)\left(x^2 + b^2\right)} dx$$

Using the residual theorem

[7 marks]

- b) Define isomorphism and show that the group (i,-1,-i,1) is isomorphic to the cyclic group $(A,A^2,A^3,A^4=E)$ [3 marks]
- c) Using the table given below, evaluate the integral

$$\int_{0}^{1.0} \frac{x^{3}}{e^{x}-1} dx$$

By using Simpson's one-third rule

[5 marks]

by using simpson some unitartite	[5 marks]
X	$f(x) = \frac{x^3}{e^x - 1} dx$
0	0
0.25	0.055013
0.50	0.192687
0.75	0.377686
1.00	0.581977

QUESTION FIVE (15 MARKS)

A sphere of radius a is centred at O. It is cut into two equal halves by the x-y plane. The upper part is maintained at potential $+V_0$ and the lower part at potential $-V_0$. Calculate the potential at a point inside the sphere in the following steps:

i) Write the Laplace's equation satisfied by the potential in spherical polar coordinates and make use of the method of separation of variables to separate it into the φ -, θ -, $\wedge r$ - ι equations.

[4 marks]

ii) Solve the φ -, θ -, $\wedge r$ - $\frac{1}{6}$ equations.

[5 marks]

PHYS 811

iii) Make use of the boundary conditions to find the potential. [6 marks]