CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (PHYSICS)

PHYS 811: MATHEMATICAL PHYSICS

STREAMS: MSC (PHYS)
TIME: 3 HOURS

DAY/DATE: TUESDAY 06/04/2021
8.30 A.M. - 11.30 A.M.

INSTRUCTIONS: Answer question ONE (Compulsory) and any other THREE questions

QUESTION ONE (15 MARKS)

a) Use Cauchy-Riemann conditions to show that $f(z)=z^{2}$ is analytic in the entire z-plane
b) Show that the following four matrices form a group under matrix multiplication [4 marks]

$$
E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], C=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

c) Prove the following recurrence relation for Bessel function

$$
J_{n}^{\prime}(x)=\frac{-n}{x} J_{n}(x)+J_{n-1}(x)
$$

Where the prime denotes the differentiation with respect to x
Given: $J_{n}(x)=\sum_{r=0}^{\infty}(-1)^{r}\left(\frac{x}{2}\right)^{n+2 r} \frac{1}{r!\sqrt{(n+r+1)}}$

PHYS 811

e) Find $\frac{\frac{d y}{d x} \wedge d^{2} y}{d x^{2}}$ for $y=e^{-x^{2}}$ at the point $\mathrm{x}=0.05$ from the data of the table given below [4 marks]

X	$y=e^{-x^{2}}$	Δ	Δ^{2}	Δ^{3}	Δ^{4}
0	1.00000				
0.05	0.99750	-250			
0.10	0.99005	-745	-495		
0.15	0.97775	-1230	-485	+10	+9
0.20	0.96079	-1696	-466	+19	+24
0.25	0.93941	-2138	-442	-410	+32
0.30	0.91393	-2548		+8	

QUESTION TWO (15 MARKS)

a) State and prove the residue theorem
[5 marks]
b) Evaluate the integral
$\int_{0}^{\infty} \frac{\sin x}{x} d x$
using the residual theorem
[10 marks]

QUESTION THREE (15 MARKS)

a) Construct the Green's function for the problem stated mathematically as
$\frac{d^{2} y}{d x^{2}}-k^{2} y=f(x)$
where $f(x)$ is a known function and y satisfies the boundary conditions $y=(\pm \infty) \quad[7$ marks]
b) Define the shifting property of the Laplace transform and use it to find the Laplace transform of $e^{-x} \cos x$
c) Obtain Rodrigues' formula for the Legendre polynomials
[4 marks]

QUESTION FOUR (15 MARKS)

a) Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x
$$

Using the residual theorem
b) Define isomorphism and show that the group $(i,-1,-i, 1)$ is isomorphic to the cyclic group $\left(A, A^{2}, A^{3}, A^{4}=E\right)$
c) Using the table given below, evaluate the integral
$\int_{0}^{1.0} \frac{x^{3}}{e^{x}-1} d x$
By using Simpson's one- third rule

X	$f(x)=\frac{x^{3}}{e^{x}-1} d x$
0	marks]
0.25	0
0.50	0.055013
0.75	0.192687
1.00	0.377686

QUESTION FIVE (15 MARKS)

A sphere of radius a is centred at O. It is cut into two equal halves by the $x-y$ plane. The upper part is maintained at potential $+\mathrm{V}_{\mathrm{o}}$ and the lower part at potential $-\mathrm{V}_{\mathrm{o}}$. Calculate the potential at a point inside the sphere in the following steps:
i) Write the Laplace's equation satisfied by the potential in spherical polar coordinates and make use of the method of separation of variables to separate it into the $\varphi-, \theta-, \wedge r-i$ equations.
[4 marks]
ii) Solve the $\varphi-, \theta-, \wedge r-i$ equations.
iii) Make use of the boundary conditions to find the potential.

