CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF
BACHELOR OF EDUCATION (SCIENCE \&ARTS), BACHELOR OF ARTS (ECON/MATH), BACHELOR OF SCIENCE (MATHEMATICS) AND BACHELOR OF ARTS (ECONOMICS \& SOCIOLOGY)

MATH 123: VECTORS AND MECHANICS

STREAMS:
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 31/3/2021
11.30 AM - 1.30 PM

INSTRUCTIONS:

- Answer Question ONE (Compulsory) and any other TWO Questions
- Take $\mathrm{g}=10 \mathrm{NKg}^{-1}$

QUESTION ONE (30 MARKS) COMPULSORY
(a) Distinguish between vectors and scalars giving an example of each. [4 Marks]
(b) Define the term mechanics.
(c) Determine the angle between the vectors

$$
\begin{equation*}
\vec{A}=3 \mathrm{i}-2 \mathrm{j}-+4 \mathrm{k} \text { and } \vec{B}=\mathrm{si}+7 \mathrm{j}-3 \mathrm{k} \tag{3Marks}
\end{equation*}
$$

(d). A force whose point of application is $(-1,2,3)$ is given by $\vec{F}=4 \tilde{\imath}+2 \tilde{j}-7 \mathrm{k}$. Determine the magnitude of the moment of the force about the point $(3,-2,1)$.
[4 Marks]
(e). Given \vec{A}, \vec{B} and \vec{C} are the three sides of a triangle and θ the angle between vectors \vec{A} and \vec{B}, prove that $\mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \operatorname{Cos} \theta$.
[3 Marks]
(f) A particle moves along a curve whose parametric equations are $x=e^{-t}, y=2 \cos 3 t$ and $z=2 \sin 3 t$, where t is the time. Find the magnitudes of its velocity and acceleration at $t=0$.
(g) Given $\phi(x, y, z)=3 x^{2} y-y 3 z^{2}$, find $\nabla \phi$ or $\operatorname{grad} \phi$ the point $(1,-2,-1)$.
(h) A 100 kg mass is suspended from the centre of a rope as shown in fig 1 .

Determine the tension T in the rope.
(i) if $\vec{A}=x^{2} z i--2 y^{3} z^{2} j+x y^{2} z k$, Find $\operatorname{div} \vec{A}$ at the point $(1,-1,1)$.

QUESTION TWO (20 MARKS)

(a) Show that the following lines intersect and if they do determine the point of intersection
$\mathrm{L}_{1}: \tilde{r}=2 \tilde{\imath}-3 \tilde{\jmath}+4 \tilde{k}+$ 人 $(6 \mathrm{i}+7 \mathrm{j}-\mathrm{k})$
$\mathrm{L}_{2}: \tilde{r}=2 \tilde{\imath}-12 \tilde{\jmath}-\tilde{k}+\mu(-\widetilde{3}+\tilde{\jmath}+3 \tilde{k})$
(b) A stone is dropped from the top of a tower 125 m . high. When it has fallen 20 m , a second stone is thrown vertically downwards with an initial velocity Vm / s from the top of the tower. If the two stones reach the ground at the same time, calculate the velocity with which the second stone hits the ground.
[6 Marks]
(c) (i) Define the term couple giving an example.
(ii) Show that a force of magnitude 36 N acting at the vertices of the square ABCD of length 20 cm (see fig2) form a couple and find the magnitude of the couple.

QUESTION THREE (20 MARKS)

(a) If $\vec{A}=x^{2} y i-2 x z j+2 y z k$, find Curl curl \vec{A}.
(b) Find the perpendicular distance of the point $\mathrm{A}(4,-3,10)$ from the line whose vector equation

$$
\text { is } \tilde{r}=\left(\begin{array}{l}
1 \tag{7Marks}\\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

(c). A particle moves along the curve $\mathrm{x}=2 \sin 3 \mathrm{t}, \mathrm{y}=2 \cos 3 \mathrm{t}, \mathrm{z}=8 \mathrm{t}$ at any time $\mathrm{t}>0$. Determine
(i) the magnitude of its velocity.
(ii) the magnitude of its acceleration.
(d) Given \vec{A}, \vec{B} and \vec{C} are the three sides of a triangle and θ is the angle between vectors \vec{A} and \vec{B}, show that
$\frac{A}{\sin A}=\frac{B}{\sin B}=\frac{C}{\operatorname{Sin} C}$
[3Marks]

Question Four (20 Marks)

(a) Prove the associative property of vector addition.
(b) Determine the area of the triangle whose vertices are $\mathrm{A}(2,-1,3), \mathrm{B}(5,-2,7)$ and $\mathrm{C}(1,5,-3)$
[4 Marks]
(c) (i) State Lamis theorem.
(iii) A body of mass 4 kg hand from a string attached to a point on a vertical wall. The string will break when its tension exceeds 50 N . If the body is pulled away from the wall by a horizontal force FN, what is the value of F at the point when the string breaks?
[4 Marks]
(d) A ladder of negligible weight stands on a rough ground with its upper end against a smooth wall. The foot of the ladder is 1 m away from the wall and the top is 3 m above the ground. A boy whose mass is 50 kg climbs two-third of the way up the ladder, at which point the ladder begins to slide down. Find:
(i) the reaction at the wall.
(ii) the reaction at the ground
(iii) the coefficient of friction when sliding begins.

Question Five (20 Marks)

(a) The resultant of two forces F_{1} and F_{2} acting at a point is R . Find an expression for:
(i) the angle \propto between F_{1} and F_{2}.
(ii) the direction of the resultant to the horizontal.
(iii) the line of action of the resultant force.
(b) (i) When $\mathrm{t}=0$, a particle A moves from point O along a straight line with an initial velocity umls and constant acceleration amls^{2}. When $\mathrm{t}=4$, a particle B moves from O along the same straight line with an initial velocity $\frac{1}{2}$ umls and a constant acceleration 20 mls^{2}. Given that when $\mathrm{t}=16$, A is ahead of B , obtain in terms of u and a an expression for the distance between the particles at that time.
[3 Marks]
(II) Given also that this distance is 12 m , and that the velocity of A when $\mathrm{t}=16$ is 10 mls , calculate:
(i) the value of u and of a.
(ii) the distance between the particles when $\mathrm{t}=18$.
(iii) the difference between their velocities when $\mathrm{t}=18$.

