CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 124: GEOMETRY AND LINEAR ALGEBRA

STREAMS:
TIME: 2 HOURS
DAY/DATE: THURSDAY 04/11/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

- All questions on this question paper are compulsory

QUESTION ONE (30 MARKS)
(a) Determine the centre and the radius of the circle whose equation is $x^{2}+y^{2}-4 x-2 y-15=0$. (4 marks)
(b) Find the equation of a circle whose centre is at the point $(2,3)$ and which passes through the point $(2,2)$ in the form $a x^{2}+b^{2}+c x+d y+f=0$ (5 marks)
(c) A line L_{1} passes through $(1,2)$ and has a gradient of 5 . Another line L_{2} is perpendicular to L_{1} and meets it at the point where $x=4$. Find the equation of L_{2}
(d) A plane has the equation $2 x+3 y+6 z+28=0$. Calculate the shortest distance of the point $(-1,1,1)$ from the plane.
(e) Find the equation of the hyperbola in standard form if its centre is the origin and the points $(6,-1)$ and $(8, \sqrt{8})$ lie on it.
(4 marks
(f) Solve the quadratic equation $x^{2}-\frac{2}{5} x+\frac{1}{5}=0$
(4 marks)
(g) Find the eccentricity of $\frac{y^{2}}{25}-\frac{x^{2}}{4}=1$
(5 marks)

QUESTION TWO (20 MARKS)

(a). Analyze fully and graph the equation

$$
\begin{equation*}
x^{2}+4 y^{2}+4 x-8 y+7=0 \tag{12marks}
\end{equation*}
$$

(b) If $\mathbf{A B}=\mathbf{a}$ and $\mathbf{A C}=\mathbf{b}$, show that the area of the triangle ABC is given by

Area $=\sqrt{(\mathrm{ab})^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}}$
(c) Hence or otherwise find the area of the triangle whose vertices are $\mathrm{A}(1,-5,3), \mathrm{B}(-1,1,6)$ and $C(3,0,1)$.

QUESTION THREE (20 MARKS)

(a) Use matrix inverse method to solve

$$
\begin{align*}
& 2 x+y-4 z=3 \\
& x+2 y-z=7 \\
& z-y+3 x=4 \tag{11Marks}
\end{align*}
$$

(b) Convert $6 x y=c^{2}$ into polar coordinates.
(3 marks)
(c) Given that $Z_{1}=4 i+3$ and $Z_{2}=7 i-2$ find
(i) $Z_{1} Z_{2}$
(2 marks)
(ii) a and b given $\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}=\mathrm{ax}+\mathrm{bi}$ (4 marks)

