

SUPPLEMENTARY / SPECIAL EXAMINATIONS
 FIRST YEAR EXAMINATION FOR THE AWARD OF BACHELOR DEGREE IN

MATH 125: DISRETE MATHEMATICS
STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDAY 16/11/2020
2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

QUESTION ONE (30 MARKS

a) Determine the validity of the following argument
S_{1} : Some crazy people are dangerous
S_{2} : All fanatics are crazy
Conclusion: some fanatics are not dangerous.
b) Prove the proposition that the sum of n positive even integers is $n(n+1)$
c) Find all the integers such that $2<8-3 n \leq 18$
d) Give an example of a non-trivial relation on the set $A=\{1,2,3\}$ which is
i. Both symmetric and antisymmetric
ii. Neither symmetric nor antisymmetric
e) Solve the linear congruence equation $4 x \equiv 6(\bmod 10)$
(4 marks)
f) Find the product of the polynomials $f(x)=4 x^{3}-2 x^{2}+3 x-1$ and $g(x)=3 x^{2}-x-4$ over Z_{5}
g) Prove that $(a+b)^{\prime}=a^{\prime} * b^{\prime}$
h) Given a binary on the set of integers given by $a * b=a+b-a b$. show that * is
commutative and associative

QUESTION TWO (20 MARKS)

a) Let $A=\{1,2,3\} B=\{a, b, c, d\}$ and $C=\{x, y, z, w\}$. Suppose R and S are relations from A to B and from B to C respectively defined by $R=\{(1, a),(2, a),(2, c),(2, d),(3, b)\}$ and $S=\{(a, x),(a, z),(c, w),(d, y)\}$.
i. Draw an arrow diagram to represent the relation $R^{\circ} S$
ii. Show that the product of the matrix representation of R and S has the same representation as the matrix $R^{\circ} S$
iii. Find the domain and range of $R^{\circ} S$
b) Let $S=\{1,2, \ldots, 9\}$ and R be a relation on S defined by $(a, b) \approx(c, d)$ if and only if $a+d=b+c$.
i. Show that \approx is an equivalence relation
ii. Find the equivalence class of $[2,5]$
c) Use Venn diagrams to determine the validity of the following arguments
S_{1} : Some innocent people go to Jail
S_{2} : Mary is innocent
S_{3} :All people in jail are bad people
Conclusion: Mary is not a bad person.

QUESTION THREE(20 MARKS)

a) Use mathematical induction to prove that 43 divide $6^{n+1}+7^{2 n+1}$
(6 marks)
b) Let $\mathrm{a}=195$ and $\mathrm{b}=968$. Use the division algorithm to find the $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ and therefore find integers m and n such that $d=a m+b n$ (6 marks)
c) Consider the third order homogeneous recurrence relation $a_{n}=6 a_{n-1}-12 a_{n-2}+8 a_{n-3}$
i. Find the general solution
(4 marks)
ii. Find the initial solution given $a_{0}=3, a_{1}=4, a_{2}=12$

