CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 201/210: LINEAR ALGEBRA I

STREAMS:

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 11/08/2021

8.30 A.M – 10.30 A.M.

<u>INSTRUCTIONS</u> Answer ALL the questions

QUESTION ONE: (30 MARKS)

a) Consider the system in unknowns x and y

 $\begin{aligned} x + ay &= 4\\ ax + 9y &= b \end{aligned}$

Find which values of a does the system have a unique solution, and for which pairs of values (a, b) does the system have more than one solution. (5 marks)

- b) Evaluate the WROSKIAN $W(e^x, e^{-x}, e^{-2x}, 0)$ (5 marks)
- c) Show that the subset $W = \{(x, y) : x \ge 0, y \ge 0, x, y \in \mathbb{R}^2\}$ is not a subspace of \mathbb{R}^2 (5 marks)
- d) For any vector $\boldsymbol{v} = (v_1, v_2)$ in R^2 , define $T: R^2 \to R^3$ defined by

 $T(v_1, v_2) = (v_1 - v_2, 3v_1 - 2v_2, v_1 + 2v_2)$, show that is a linear transformation (5 marks)

e) Determine if $p_1 = 1 - t$, $p_2 = 2 - t + t^2$ and $p_3 = 2t + 3t^2$ is a basis for the vector space $P_2(t)$ of polynomials of degree less or equal to 2 (5 marks)

QUESTION TWO: (20 MARKS)

(a) Let
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $A\boldsymbol{x} = \boldsymbol{b}$ consistent for all values of b_1, b_2, b_3 ? Verify (6 marks)

(b) By use of the concept of rank of matrix, determine the type of solution to the following system of equations

$$2x_1 + x_2 + x_3 = 1$$

-x₁ + 2x₂ - 3x₃ = 3
x₁ + 3x₂ - 2x₃ = 4
(7 marks)

c) Find the basis and dimension of the solution space for the equations

$$2x_{1} + 2x_{2} - x_{3} + x_{5} = 0$$

-x_{1} - x_{2} + 2x_{3} - 3x_{4} + x_{5} = 0
$$x_{1} + x_{2} - 2x_{3} - x_{5} = 0$$

$$x_{3} + x_{4} + x_{5} = 0$$
 (7 marks)

QUESTION THREE: (20 MARKS)

a) Using of row reduction method, find the inverse for the matrix A = $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & -3 \\ 2 & 1 & 5 \end{bmatrix}$ hence x + y + 2z = 2solve the system x + y - 3z = 2 (10 marks)

solve the system x + y - 3z = 22x + y + 5z = 5

- b) Let $F: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear mapping defined by F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t). Find
 - i. The basis and dimension of the kernel of F
 - ii. A basis and dimension of the image of F
 - iii. Using the parts i) and ii) above, verify the dimension theorem (10 marks)