CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

Abstract

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS, BACHELOR OF SCIENCE CHEMISTRY/INDUSTRIAL CHEMISTRY, BACHELOR OF ARTS (MATHS-ECONS) AND BACHELOR OF SCIENCE (ECON STATS)

MATH 201: LINEAR ALGEBRA I

STREAMS: AS ABOVE Y2S2
TIME: 2 HOURS
DAY/DATE: MONDAY 05/07/2021
2.30 P.M. - 4.30 P.M.

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Consider the system in unknowns x and y

$$
\begin{aligned}
& a x+9 y=b \\
& 2 x+a y=4
\end{aligned}
$$

Find which values of (a, b) that give the three types of solutions to the system
b) Evaluate the WROSKIAN $W\left(\sin x, \sin 2 x, \cos x, \frac{\pi}{4}\right)$
c) Distinguish the Kernel and Range of a transformationT. Hence prove that if $T: U \rightarrow V$ is a linear transformation, then the kernel of T is a subspace of U .
d) Show that the subset $W=\{(x, y): x+y=0, x, y \in R\}$ is a subspace of R^{2}
e) Determine if $T: R^{3} \rightarrow R^{2}$ defined as $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{3}, 2 x_{2},-x_{3}\right)$ is a linear transformation.
f) Verify whether or not the vector $(1,2,-1)$ is a linear combination of the vectors $\{(1,1,-1),(2,2,1),(-$ $1,-1,2)\}$. Can these vectors form a basis for \mathbb{R}^{3}
g) Given the following basis for $\mathbb{R}^{3} B=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $B^{\prime}=\{(1,0,1),,(2,1,2),(1,2,2)\}$ find a transition matrix from B to B^{\prime}

QUESTION TWO: (20 MARKS

a) For which values of a does the below system has
(i) No solution
(ii) Unique solution
(iii) Infinitely many solutions.

$$
\begin{gathered}
a x_{1}+x_{2}+x_{3}=-1 \\
x_{1}+a x_{2}+x_{3}=4 \\
x_{1}+x_{2}+a x_{3}=1
\end{gathered}
$$

b) (i)Using of row reduction method, find the inverse for the matrix $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 6 \\ 1 & 1 & 4\end{array}\right]$
(ii) Hence or otherwise find all the solutions to the system $A^{2} x=b$ where b is the vector $(0,1,1)$
(c) For a matrix $\mathrm{A}_{(\mathrm{m} \times \mathrm{n})}$, prove that
i) If A is invertible, then $\mathrm{A} \underline{x}=\underline{\mathrm{b}}$ has a unique solution for any $\mathrm{b} \quad$ (2 marks)
ii) If A is row equivalent to an identity matrix I_{n}, then A is invertible (2 marks)

QUESTION THREE: (20 MARKS)

a) Find the inverse of the following matrix by first getting the adjoint

$$
\left(\begin{array}{ccc}
2 & 1 & -2 \\
3 & 2 & 2 \\
5 & 4 & 3
\end{array}\right)
$$

Hence or otherwise, solve the following system of linear equations

$$
\begin{aligned}
& 2 x_{1}+x_{2}-2 x_{3}=10 \\
& 3 x_{1}+2 x_{2}+2 x_{3}=1 \\
& 5 x_{1}+4 x_{2}+3 x_{3}=4
\end{aligned}
$$

b) Let $F: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ be a linear mapping defined by $F(x, y, z, w, t)=(x+2 y+w-t, 2 x-y+3 z+t,-x-2 z+t, 2 w+8 t)$. Find
i. The basis and dimension of the kernel of F
ii. A basis and dimension of the image of F
iii. Using the parts i) and ii) above, verify the dimension theorem
c) Show that the vectors $\left\{1, x-1, x^{2}-1\right\}$ is a basis for the vector space $P^{2}(x)=$ the space of all polynomials in x of degree less or equal to 2

QUESTION FOUR: (20 MARKS)

a) Solve the following system of equations of the planes by use of Gauss Jordan elimination method

$$
\begin{gathered}
2 x_{1}+x_{2}+x_{3}=1 \\
-x_{1}+2 x_{2}-3 x_{3}=3 \\
x_{1}+3 x_{2}-2 x_{3}=4
\end{gathered}
$$

Hence give the geometrical interpretation of the solution of the planes
b) (i)Prove that if S is a subset of a vector space V, then the set spanned by S is a subspace of V.
ii) Let $\mathrm{V}=\mathrm{R}^{3}$ and $\mathrm{S}=\{(2,3,5),(1,2,4),(-2,2,3)\}$. Determine if $(10,1,4) \in \operatorname{span} \mathrm{S} \quad(4$ marks $)$
c) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y)=(x-2 y,-x+3 y)$
i. Find the matrix of T relative to the basis $B=\{(1,0),(1,1)\}$
ii. Find the matrix of T relative to the basis $B^{\prime}=\{(1,-1),(1,2)\}$
iii. Find the transition matrix P from the basis B to the basis B' and verify the relation $P^{-1}[T]_{B} P=[T]_{B^{\prime}}$

QUESTION FIVE: (20 MARKS)

a) Use Cramer's method to solve the system of equation

$$
\begin{align*}
x+y-2 z & =-3 \\
w+2 x-y & =2 \\
2 w+4 x+y-3 z & =-2 \\
w-2 x-7 y-z & =5 \tag{8marks}
\end{align*}
$$

b) Find the basis and dimension of the solution space for the equations

$$
\begin{gather*}
2 x_{1}+2 x_{2}-x_{3}+x_{5}=0 \\
-x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0 \\
x_{1}+x_{2}-2 x_{3}-x_{5}=0 \\
x_{3}+x_{4}+x_{5}=0 \tag{7marks}
\end{gather*}
$$

c) Prove that any two bases defined on the same vector space have the same number of vectors. (5 marks)

