

UNIVERSITY

EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

MATH 202 - FUNDAMENTALS OF LINEAR ALGEBRA

STREAMS: Y2 S2
TIME: 2 HOURS
DAY/DATE: TUESDAY 6/07/2021
5.00 PM - 7.00 PM

INSTRUCTIONS:

1. Answer Question $\mathbf{1}$ and Any Other Two questions.
2. Mobile phones are not allowed in the examination room.
3. You are not allowed to write on this examination question paper.

SECTION A - ANSWER ALL QUESTIONS IN THIS SECTION QUESTION ONE

a) Compute the determinant

$$
C=\left[\begin{array}{rrr}
\frac{1}{2} & -1 & -\frac{1}{3} \\
\frac{3}{4} & \frac{1}{2} & -1 \\
1 & -4 & 1
\end{array}\right] .
$$

b) Let $\mathrm{u}=2 \mathrm{i}-3 \mathrm{j}+4 \mathrm{k}, \mathrm{v}=3 \mathrm{i}+\mathrm{j}-2 \mathrm{k}, \mathrm{w}=\mathrm{i}+5 \mathrm{j}+3 \mathrm{k}$

Find $u \times v$ and $u \times w$
c) Determine whether or not the vectors $u=(1,1,2)$, $w=(4,5,5)$ in R^{3} are linearly dependent
d) Reduce the following matrix to echelon form

$$
A=\left[\begin{array}{llll}
1 & 2 & -3 & 0 \\
2 & 4 & -2 & 2 \\
3 & 6 & -4 & 3
\end{array}\right]
$$

e) show that the below matrices are inverses

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right] \text { and } B=\left[\begin{array}{rrr}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{array}\right]
$$

f)Define what is a vector subspace
g)

Let $A=\left[\begin{array}{rrrrr}1 & -2 & 3 & 1 & 2 \\ 1 & 1 & 4 & -1 & 3 \\ 2 & 5 & 9 & -2 & 8\end{array}\right]$.
Use Gauss-Jordan to find the row canonical form of A

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION QUESTION TWO

a)Express $u=(1,-2,5)$ in R^{3} as a linear combination of the vectors.

$$
\mathrm{u}_{1}=(1,1,1), \quad \mathrm{u}_{2}=(1,2,3), \quad \mathrm{u}_{3}=(2,-1,1)
$$

b) Find all eigenvalues and corresponding eigenvectors of A

$$
A=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right] .
$$

c)

Let $A=\left[\begin{array}{rr}2 & -2 \\ -2 & 5\end{array}\right]$, a real symmetric matrix.
Find an orthogonal matrix P such that $\mathrm{P}^{-1} \mathrm{AP}$ is diagonal.

QUESTION THREE

a) Evaluate the following system using Gaussian elimination.

$$
\begin{aligned}
x+2 y-4 z & =-4 \\
2 x+5 y-9 z= & -10 \\
3 x-2 y+3 z= & 11
\end{aligned}
$$

b) Find solution using revised simplex method

$$
\operatorname{MAX~Z}=3 \mathrm{X}_{1}+5 \mathrm{X}_{2}
$$

Subject to

$$
X_{1} \leq 4
$$

$$
X_{2} \leq 6
$$

$$
3 X_{1}+2 X_{2} \leq 18
$$

And $X_{1}, X_{2} \geq 0$

QUESTION FOUR

a) Suppose $u=(1,2,3,4)$ and $v=(6, k,-8,2)$.Find k so that u and v are orthogonal. (3 marks)
b) Suppose $u=(1,-2,3)$ and $v=(2,4,5)$. Find the distance, angle and projection
c) Find the characteristic polynomial of the below matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 3 & 2 \\
1 & 3 & 9
\end{array}\right] \text {. }
$$

d) Find the quadratic form $q(x)$ that corresponds to the symmetric matrix

$$
B=\left[\begin{array}{rrr}
4 & -5 & 7 \\
-5 & -6 & 8 \\
7 & 8 & -9
\end{array}\right]
$$

QUESTION FIVE

a)Find the inverse (3 marks)

$$
A=\left[\begin{array}{ll}
5 & 3 \\
4 & 2
\end{array}\right]
$$

b) Determine if A is an orthogonal matrix

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

c)

$$
\text { Let } A=\left[\begin{array}{rr}
1 & 2 \\
4 & -3
\end{array}\right]
$$

$$
f(x)=2 x^{3}-4 x+5 \text { and } g(x)=x^{2}+2 x+11
$$

Find
i. $\quad A^{2}$
ii. $\quad A^{3}$
iii. $\quad f(A)$
iv. $\quad g(A)$
(12 marks)

