CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 204: ALGEBRAIC STRUCTURES

STREAMS:

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 11/08/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS

Answer ALL the questions.
QUESTION ONE (30 MARKS)
a) Define the following terms
i. A subgroup H of a group G (1 mark)
ii. A homomorphism of groups (1 mark)
iii. The characteristic of a ring (1 mark)
iv. A principal ideal (1marks)
b) Let S be a set of four elements given by $S=\{A, B, C, D\}$. In the table below, all the elements of S are listed in a row at the top and in a column at the left. The result $x * y$ is found in the row that starts with x at the left and the column that has y at the top.

$*$	A	B	C	D
A	B	C	A	B
B	C	D	B	A
C	A	B	C	D
D	A	B	D	D

i. Is the binary operation * commutative? Support your answer. (2 marks)
ii. Determine whether there is an identity element in S for *
(2 marks)
iii. If there is an identity element, which elements in S are invertible?
(2 marks)
c) Given a group G , define the centre of $\mathrm{G},(\mathrm{z}(\mathrm{G}))$ and show that it is a normal subgroup of G
(5 marks)
d) Let G be a cyclic group generated by a i.e. $G=\langle a\rangle$. Prove that G is abelian. (5 marks)
e) The addition and part of the multiplication table for the ring $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ are given below. Use the distributive laws to complete the multiplication table below (5 marks)

+	A	B	C	D
A	A	A	C	D
B	B	C	D	A
C	C	D	A	B
D	D	A	B	C

.	A	B	C	D
A	A	A	A	A
B	A	C		D
C	A		A	
D	A		A	C

f) Let I be an ideal of a ring R, prove that the set $K=\{x \in R: x a=0 \forall a \in R\}$ is an ideal of R

QUESTION TWO (20 MARKS)

a) Consider the set $R=\{[0],[2],[4],[6],[8]\} \subseteq Z_{10}$.
i. Construct addition and multiplication tables for R using operations as defined in
Z_{10}
(4 marks)
ii. Show that R is a commutative ring with unity.
iii. Show that R a subring of Z_{10}
iv. Does R have zero divisors?
v. Is R an integral domain?
vi. Is R a field?
b) Consider the group $D_{3}=<a, b: a^{2}=b^{3}=e ; b a=a b^{2}>$ and the subgroup $H=\{e, a\}$.
i. List the right and left cosets of H in D_{3}
ii. Is H a normal subgroup of D_{3} ? Support your answer.

QUESTION THREE (20 MARKS)

a) State and prove Lagrange's theorem.
(7 marks)
b) Given that the set $S=\left\{\left.\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] \right\rvert\, x, y, z \in Z\right\}$ is a ring with respect to matrix addition and multiplication, show that $I=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in Z\right\}$ is an ideal of $S \quad$ (7 marks)
c) Prove that he characteristic of an integral domain is either zero or a prime integer
(6 marks)

