CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 204: ALGEBRAIC STRUCTURES

STREAMS:

TIME: 2 HOURS

2.30 P.M – 4.30 P.M.

(2 marks)

DAY/DATE: WEDNESDAY 11/08/2021

INSTRUCTIONS

Answer ALL the questions.

QUESTION ONE (30 MARKS)

a)	Define the following terms				
	i.	A subgroup H of a group G	(1 mark)		
	ii.	A homomorphism of groups	(1 mark)		
	iii.	The characteristic of a ring	(1 mark)		
	iv.	A principal ideal	(1marks)		

b) Let S be a set of four elements given by $S = \{A, B, C, D\}$. In the table below, all the elements of S are listed in a row at the top and in a column at the left. The result x * y is found in the row that starts with x at the left and the column that has y at the top.

*	А	В	С	D
А	В	С	А	В
В	С	D	В	А
С	А	В	С	D
D	А	В	D	D
Is the binery operation * commutative? Support your operation (2 mortes)				

i. Is the binary operation * commutative? Support your answer. (2 marks)

ii. Determine whether there is an identity element in S for *

iii. If there is an identity element, which elements in S are invertible? (2 marks)

- c) Given a group G, define the centre of G,(z(G)) and show that it is a normal subgroup of G (5 marks)
- d) Let G be a cyclic group generated by a i.e. $G = \langle a \rangle$. Prove that G is abelian. (5 marks)

MATH 204

e) The addition and part of the multiplication table for the ring $R=\{a,b,c,d\}$ are given below. Use the distributive laws to complete the multiplication table below (5 marks)

(0 11111113)				
+	А	В	С	D
А	А	А	С	D
В	В	С	D	А
С	С	D	А	В
D	D	А	В	С

•	А	В	С	D
А	А	А	А	А
В	А	С		D
С	А		А	
D	А		А	С

f) Let I be an ideal of a ring R, prove that the set $K = \{x \in R : xa = 0 \forall a \in R\}$ is an ideal of (5 marks) R

QUESTION TWO (20 MARKS)

a)	Consider the	set $R =$	$\{[0], [2], [4], [6], [8]\} \subseteq Z_{10}$.
----	--------------	-----------	--

/	(1)				
i.	Construct addition and multiplication tables for R using opera	tions as defined in			
	Z_{10}	(4 marks)			
ii.	Show that R is a commutative ring with unity.	(2 mars)			
iii.	Show that R a subring of Z_{10}	(2 marks)			
iv.	Does R have zero divisors?	(2 marks)			
v.	Is R an integral domain?	(2 marks)			
vi.	Is R a field?	(2 mark)			
b) Consider the group $D_3 = \langle a, b : a^2 = b^3 = e; ba = ab^2 \rangle$ and the subgroup $H = \{e, a\}$.					
	i. List the right and left cosets of H in D_3	(5 marks)			
	ii. Is H a normal subgroup of D_3 ? Support your answer.	(1 marks)			
ESTION THREE (20 MARKS)					
	1 7 1.1				

QUES

a) State and prove Lagrange's theorem. (7 marks) b) Given that the set $S = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} | x, y, z \in Z \right\}$ is a ring with respect to matrix addition and multiplication, show that $I = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in Z \right\}$ is an ideal of S (7 marks) c) Prove that he characteristic of an integral domain is either zero or a prime integer (6 marks)