CHUKA

UNIVERSITY

SUPPLEMENTARY / SPECIAL EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF BACHELOR DEGREE

MATH 204 : ALGEBRAIC STRUCTURES

STREAMS:

TIME: 2 HOURS

DAY/DATE: MONDAY 16/11/2020

2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

a)

Answer All Questions

QUESTION ONE (30 MARKS)

Defin	e the following terms	
i.	A subgroup H of a group G	(1 mark)
ii.	A homomorphism of groups	(1 mark)
iii.	The characteristic of a ring	(1 mark)
iv.	A principal ideal	(1marks)

b) Let S be a set of four elements given by $S = \{A, B, C, D\}$. In the table below, all the elements of S are listed in a row at the top and in a column at the left. The result x * y is found in the row that starts with x at the left and the column that has y at the top.

	*	А	В	С	D
	А	В	С	А	В
	В	С	D	В	А
	С	А	В	С	D
	D	А	В	D	D
i.	Is the binary operation * commutative? Support your answer.			(2 marks)	

ii. Determine whether there is an identity element in S for * (2 marks)

MATH 204

- iii. If there is an identity element, which elements in S are invertible? (2 marks)
 - c) Given a group G, define the centre of G,(z(G)) and show that it is a normal subgroup of G (5 marks)
 - d) Let G be a cyclic group generated by a i.e. $G = \langle a \rangle$. Prove that G is abelian. (5 marks)
 - e) The addition and part of the multiplication table for the ring R={a,b,c,d} are given below. Use the distributive laws to complete the multiplication table below (5 marks)

+	А	В	C	D
А	А	А	C	D
В	В	С	D	А
С	С	D	А	В
D	D	А	В	С

	А	В	С	D
А	А	А	А	А
В	А	С		D
С	А		А	
D	А		А	С

f) Let I be an ideal of a ring R, prove that the set $K = \{x \in R : xa = 0 \forall a \in R\}$ is an ideal of R (5 marks)

QUESTION TWO (20 MARKS)

a) Consider the set $R = \{[0], [2], [4], [6], [8]\} \subseteq Z_{10}$.

	i.	Construct addition and multiplication tables for R using operations as defined		
		Z_{10}	(4 marks)	
	ii.	Show that R is a commutative ring with unity.	(2 mars)	
	iii.	Show that R a subring of Z_{10}	(2 marks)	
	iv.	Does R have zero divisors?	(2 marks)	
	v.	Is R an integral domain?	(2 marks)	
	vi.	Is R a field?	(2 mark)	
b)	Con	sider the group $D_3 = \langle a, b : a^2 = b^3 = e; ba = ab^2 \rangle$ and the subgroup	$H = \{e, a\}.$	
		i. List the right and left cosets of H in D_3	(5 marks)	

ii. Is H a normal subgroup of D_3 ? Support your answer. (1 marks)

QUESTION THREE (20 MARKS)

- a) Given the set $A = \{5, 15, 25, 35\}$
 - i. Show that A is a group under multiplication modulo 40 (8 marks)

(2 marks)

- ii. Find the identity element
- b) Identify which of the following maps are group homomorphism and if it is, find its kernel
 - i. G is the group of non-zero real numbers under multiplication and $\varphi(x) = 2^x \forall x \in G$
 - ii. G is the group of real numbers under addition and $\phi(x) = x + 1$ (6 marks)
- b) Prove that a group G is abelianiff $(ab)^{-1} = a^{-1}b^{-1} \forall a, b \in G$ (4 marks)

.....