COSC 340

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE COMPUTER SCIENCE / BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

COSC 340: THEORY OF COMPUTATION

STREAMS: BSC COMPUTER SCIENCE / BSC APPLIED COMPUTER SCIENCE

TIME: 2 HOURS

DAY/DATE: FRIDAY 14/12/2018	8.30	A.M.	_	10.30
A.M.				

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

SECTION A: ANSWER <u>ALL</u> QUESTIONS IN THIS SECTION

QUESTION ONE [30 MARKS]

- a) Explain and give an example of each of the following terms used in Theory of Computation:

 Alphabet.
 Alphabet.
 String.
- b) Describe the role of language in the Theory of Computation. [3 Marks]

c)	As physics is to physical systems so Theory of Computation is to Computing and				
	Information Systems. Discuss.	[4 Marks]			
d)	Let M be a Turing machine, and let w be an input string for M. Define the run tM(w) of M on input w according to Theory of Complexity.	ning time [4 Marks]			
e)	List and explain the four contributions that Alan Turing is famous for in Comp	outer Science. [4 Marks]			
f)	Describe the halting problem and give an example of its applications to now ad professionals.	lays computer [4 Marks]			
g)	Explain the importance of NP-Complete problems to computer scientists.	[4 Marks]			
h)	Highlight in brief each of the branches of the Theory of Computation.	[3 Marks]			

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO [20 MARKS]

- a) Let L be the language {0ⁿ1ⁿ|n>=0}. Explain why language L is not considered a regular language.
 [4 Marks]
- b) Let $A_{DFA} = \{(M, w): M \text{ is a deterministic finite automatonthat} accepts the stringw \}$. A_{DFA} is decidable. Explain and justify your answer through proof. [6 Marks]
- c) The language A_{TM} is undecidable. Explain. [4 Marks]
- d) Identify any three modern applications that reference Finite Automata in their designs. [6 Marks]

QUESTION THREE [20 MARKS]

- a) Demonstrating using a Turing Machine, differentiate between Turing Recognizable and Turing Decidable Languages. [4 Marks]
- a) An important application of context-free grammars occurs in the specification and compilation of programming languages. Discuss. [6 Marks]

b) Machine M is given below:

- i. Formally define Machine M. [5 Marks]
- ii. Define the language L(M) of machine M. [5 Marks]

QUESTION FOUR [20 MARKS]

a) Identify the language used by each of the following computation models and explain your answer:

i.	Finite Automaton.	[2 Marks]
ii.	Push Down Automata.	[2 Marks]
iii.	Context Free Grammar.	[2 Marks]
iv.	Turing Machines.	[2 Marks]

b) Study the machine given below:

- i. Explain with justification what type of machine this is. [4 Marks]
- ii. Demonstrate the computation of an input 010110 on this machine. [8 Marks]

QUESTION FIVE [20 MARKS]

a) Let $L(A) = \{0, 01\}$ and $L(B) = \{1, 10\}$. Find:

	i.	Union of L(A) and L(B). [2 Marks]	
	ii.	Concatenation of L(A) and L(B).	[2 Marks]
b)	Consi	der the following components of Context Free Grammar:	
	S→Al A→aA B→bH	B A 3	
	i.	Define the Grammar.	[4 Marks]
	ii.	Generate the string aaaabb from the grammar.	[2 Marks]
	iii.	Draw the parse tree to generate the string aaaabb from the gramma	r. [2 Marks]
c)	Expla	in how Hilbert's problems have influenced Computer Science.	[4 Marks]
d)	State a Comp	and explain the Church-Turing thesis highlighting its impact to the Tutation.	Theory of [4 Marks]