UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF

BACHELOR OF SCIENCE DEGREE IN MATHEMATICS AND BACHELORS OF SCIENCE CHEMISTRY

MATH 204: ALGEBAIC STRUCTURES

STREAMS: AS ABOVE
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 31/3/2021
11.30 AM - 1.30 PM

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

OUESTION ONE ($\mathbf{3 0}$ MARKS)

a) Given that $x, y \in N$ Determine whether the following binary operations are commutative, associative.
i. $\quad x * y=x+x y$
(3 marks)
ii. $\quad x * y=\frac{x y}{x+y}$ where $x \neq-y$
b) Let G be the group of integers under addition and G^{\prime} be the group with elements $\{1,-1\}$ under multiplication. Define a mapping $\emptyset(x)=\left\{\begin{array}{c}1 \text { if } n \text { is odd } \\ -1 \text { if } n \text { is even }\end{array}\right.$
i. Show that \varnothing is a group homomorphism
(3 marks)
ii. Find ker \varnothing
(2 marks)
c) Verify whether or not the following statements are true about groups
i. A group of order 32 has a subgroup of order 18
ii. Every cyclic group is abelian
d) Let G be a group and $a, b, c \in G$, show that $a \circ b=a \circ c$ imply $b=c$
e) The addition and part of the multiplication table for the ring $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ are given below. Use the distributive laws to complete the multiplication table below

+	A	B	C	D
A	A	A	C	D
B	B	C	D	A
C	C	D	A	B
D	D	A	B	C

.	A	B	C	D
A	A	A	A	A
B	A	C		D
C	A		A	
D	A		A	C

(4marks)
e) If θ is a homomorphism of rings, show that
i. $\quad \theta(0)=0$
ii. $\quad \theta(-r)=-\theta(r)$ for all r
(3 marks)

OUESTION TWO (20 MARKS)

a) (i)Write the permutations (23) and (13)(245) on 5 symbols in two line notation.
(ii) Express the products $(23) \circ(13)(245)$ and $(13)(245) \circ(23)$ in cyclic notation.
(iii) Express in cyclic notation the inverses of (23) and of (13)(245). (6 marks)
b) Show that the set $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right\}$ forms a cyclic group under matrix multiplication. Construct a Carley table for the group
c) Consider the the set $S=\{a, b, c, d\}$.Verify whether or not S together with each of the binaries represented in the tables below forms a commutative group on the set S . (assume associativity)

\bullet	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

*	a	b	c	d
a	d	a	c	b
b	a	c	b	d
c	b	d	a	c
d	c	b	d	a

QUESTION THREE (20 MARKS)

a) Given a group G , define the centre of $\mathrm{G},(\mathrm{z}(\mathrm{G}))$ and show that it is a normal subgroup of G (4 marks)
b) Let G be a group of order 91 . Verify whether or not G is cyclic. (Hint: 91 is prime)
c) Given the set $A=\{5,15,25,35\}$ Show that A is a group under multiplication modulo 40
(5 marks)
d) Consider the group $D_{4}=<a, b: a^{2}=b^{4}=e ; b a=a b^{3}>$ and the subgroup $H=\left\{e, b^{2}\right\}$.

$$
\begin{array}{lll}
\text { i. } & \text { List the right and left cosets of } \mathrm{H} \text { in } D_{4} & \text { (5 marks) } \\
\text { ii. } & \text { Is H a normal subgroup of } D_{4} \text { ? Explain } & \text { (2 marks) }
\end{array}
$$

QUESTION FOUR (20 MARKS)

a) Show that $S=\{2 k: k \in Z\}$ with addition and multiplication as defined on Z is a ring while $T=\{2 k+1: k \in Z\}$ is Not
b) Define and give an example of an integral domain. Suppose a, b and c are elements of an integral domain D such that $\mathrm{ab}=\mathrm{ac}$ and $a \neq 0$. Prove that $\mathrm{b}=\mathrm{c}$
c) Consider the set $R=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{\bar{c}} . \overline{0} .1\} \subseteq Z_{14}$. (some of the remainders of division modulo 14)
i. Construct addition and multiplication tables for R using operations as defined in Z_{14}
ii. Show that R is a commutative ring with unity.
iii. Show that R a subring of Z_{14}
iv. Does R have zero divisors?
v. Is R a field? If yes illustrate each element with its inverse

QUESTION FIVE (20 MARKS)

a) Let G be a group in which every element has order at most 2 . Show that G is abelian
(3 marks)
b) Show that in an abelian group G, the set of all elements with finite order in G is a subgroup of G.
(5 marks)
c) Let G be the set of eight elements given by $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j$.
i. Construct a multiplication table for the group.
(6 marks)
ii. Consider the cyclic group group $H=\langle i\rangle$. list all the distinct cosets of H in G. Is H a normal subgroup of G ?
(6 marks)

