CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE MATHEMATICS AND BACHELORS OF SCIENCE CHEMISTRY

MATH 204: ALGEBRAIC STRUCTURES

INSTRUCTIONS:	
DAY/DATE:	•••••
TIME: 2HRS	
STREAMS: `` As above``	

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Given that $x, y \in N$ Determine whether the following binary operations are commutative, associative.

i.
$$x * y = x + xy$$
 (3 marks)

ii.
$$x * y = \frac{xy}{x+y}$$
 where $x \neq y$ (3 marks)

b) Let G be the group of integers under addition and G' be the group with elements $\{1,-1\}$ under multiplication. Define a mapping $\emptyset(x) = \{ \begin{array}{c} 1 \ if \ n \ is \ odd \\ -1 \ if \ n \ is \ even \end{array} \}$

- i. Show that \varnothing is a group homomorphism (3 marks)
- ii. Find $\ker\emptyset$ (2 marks)
- c) Verify whether or not the following statements are true about groups
 - i. A group of order 32 has a subgroup of order 18 (3 marks)
 - ii. Every cyclic group is abelian (3 marks)
- d) Let G be a group and $a, b, c \in G$, show that $a \circ b = a \circ c$ imply b = c (3 marks)
- e) The addition and part of the multiplication table for the ring $R=\{a,b,c,d\}$ are given below. Use the distributive laws to complete the multiplication table below .

+	A	В	C	D
A	A	A	C	D
В	В	C	D	A
С	С	D	A	В
D	D	A	В	С

•	Α	В	C	D
A	A	A	A	A
В	A	C		D
С	A		A	
D	A		A	С

(4marks)

- e) If θ is a homomorphism of rings, show that
 - i. $\theta(0) = 0$ (3 marks)
 - ii. $\theta(-r) = -\theta(r)$ for all r (3 marks)

QUESTION TWO (20 MARKS)

- a) (i) Write the permutations (23) and (13)(245) on 5 symbols in two line notation.
 - (ii) Express the products $(23) \circ (13)(245)$ and $(13)(245) \circ (23)$ in cyclic notation.
 - (iii) Express in cyclic notation the inverses of (23) and of (13)(245). (6 marks)
- b) Show that the set $S = \{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\}$ forms a cyclic group under matrix multiplication. Construct a Carley table for the group (6 marks)
- c) Consider the set $S=\{a,b,c,d\}$. Verify whether or not S together with each of the binaries represented in the tables below forms a commutative group on the set S. (assume associativity)

•	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

*	a	b	С	d
a	d	a	c	b
b	a	c	b	d
c	b	d	a	c
d	c	b	d	a

(8 marks)

(4 marks)

QUESTION THREE (20 MARKS)

- a) Given a group G, define the centre of $G_i(z(G))$ and show that it is a normal subgroup of G (4 marks)
- b) Let G be a group of order 91. Verify whether or not G is cyclic. (Hint: 91 is prime)

c) Given the set $A = \{5,15,25,35\}$ Show that A is a group under multiplication modulo 40 (5 marks)

d) Consider the group $D_4 = \langle a,b : a^2 = b^4 = e; ba = ab^3 \rangle$ and the subgroup $H = \{e,b^2\}$.

i. List the right and left cosets of H in D_4 (5 marks)

ii. Is H a normal subgroup of D_4 ? Explain (2 marks)

QUESTION FOUR (20 MARKS)

a) Show that $S = \{2k : k \in Z\}$ with addition and multiplication as defined on Z is a ring while $T = \{2k + 1 : k \in Z\}$ (4 marks)

b) Define and give an example of an integral domain. Suppose a,b and c are elements of an integral domain D such that ab=ac and $a \ne 0$. Prove that b=c (5 marks)

c) Consider the set $R = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10.14}\} \subseteq Z_{14}$. (some of the remainders of division modulo 14)

i. Construct addition and multiplication tables for R using operations as defined in Z_{14}

(4 marks)

ii. Show that R is a commutative ring with unity. (2 mars)

iii. Show that R a subring of Z_{14} (2 marks)

iv. Does R have zero divisors? (1 marks)

v. Is R a field? If yes illustrate each element with its inverse (2 mark)

QUESTION FIVE (20 MARKS)

a) Let G be a group in which every element has order at most 2. Show that G is abelian

(3 marks)

b) Show that in an abelian group G, the set of all elements with finite order in G is a subgroup of G.

(5 marks)

- c) Let G be the set of eight elements given by $G=\{\pm 1,\pm i,\pm j,\pm k\}$ with multiplication given by $i^2=j^2=k^2=-1$, ij=-ji=k, jk=-kj=i, ki=-ik=j.
 - i. Construct a multiplication table for the group. (6 marks)
 - ii. Consider the cyclic group group $H=<\!i>$. list all the distinct cosets of H in G. Is H a normal subgroup of G? (6marks)