CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 205: ELEMENTS OF SET THEORY

STREAMS:

TIME: 2 HOURS

8.30 A.M - 10.30 A.M.

DAY/DATE: WEDNESDAY 11/08/2021 INSTRUCTIONS

• Answer all the questions

QUESTION ONE (30 MARKS)

- a) For each of the following cases, determine whether it represents a function. If it is a function, state whether it is injective
 - i. To each of the 24 student in math 205, assign the gender
 - ii. To each student in Chuka university, assign a registration number
 - iii. To each student in first year, assign the semester course units
 - iv. To each book written by a single author, assign the author
 - v. To each positive number, assign its square root (5 marks)
- b) Given the sets $A_n = \{n, n+2\}$, where n is a positive integer evaluate

i.
$$\bigcup_{n=3}^{10} A_n$$
 and $\bigcap_{n=1}^{10} A_n$
ii. $\bigcup_n A_n$ and $\bigcap_n A_n$ (4 marks)

c) Find the domain of the function
$$f: R \to R$$
 defined by $f(x) = \frac{4}{\sqrt{x^2 - 4}}$ (5 marks)

d) Consider the set
$$A = \left\{ 11 + (-1)^n \frac{1}{n} \right\}$$
 where n is a positive integer

i. Find the supremum and the infimum of A (2 marks)

	ii. Find all the limit points of A	(1 marks)	
e)	With an appropriate example, show that a bounded sequence is not necessarily		
	convergent	(3 marks)	
f)	Let A and B be sets. Show that the product order on $A \times B$ defined by $(a,b) \prec (c,d)$ if		
	$a \le c$ and $b \le d$ is a partial order on $A \times B$	(4 marks)	
g)	Prove that the set of integers is countable	(4marks)	
h)	State the Axiom of choice	(2 marks)	

QUESTION TWO (20 MARKS)

a)	Distinguish	the following
----	-------------	---------------

i.	A restriction and an inclusion map	(3 marks)
ii.	A countable and uncountable set	(3 marks)
iii.	A linearly ordered set and a poset	(3 marks)
		$ \mathbf{x} $

b) Prove the generalized Consider the function $f: R \to R$ defined by $f(x) = \frac{|x|}{x} : x \neq 0$ and

f(0) = 0. Determine

i. The quotient sets
$$\frac{R}{f}$$
 (3 marks)

ii. The image
$$f(R)$$
 (3 marks)

c) Prove that if the limit of a sequence exists, then it is unique (5marks)

QUESTION THREE (20 MARKS)

a) Let $A_m = \{m, 2m, 3m, \dots, m \in N\}$, determine and explain the following sets

i.	$A_3 \cap A_7$	(3 marks)
ii.	$A_3 \bigcup A_7$	(3 marks)
iii.	$\bigcup_m A_m$	(2 marks)
iv.	$\bigcap_m A_m$	(2 marks)
b) Prove that the intervals [0,1]and(0,1] are equivalent. (5 marks)		
c) Prove t	hat a countable union of finite sets is countable	(5 marks)