

UNIVERSITY EXAMINATION

RESIT /SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 205: ELEMENTS OF SET THEORY

STREAMS:
DAY/DATE: THURSDAY 04/11/2021

TIME: 2 HOURS
8.30 A.M - 10.30 A.M

INSTRUCTIONS:

Answer all the questions

QUESTION ONE (30 MARKS)

a) For each of the following cases, determine whether it represents a function. If it is a function, state whether it is injective
i. To each of the 24 student in math 205, assign the gender
ii. To each student in Chuka university, assign a registration number
iii. To each student in first year, assign the semester course units
iv. To each book written by a single author, assign the author
v. To each positive number, assign its square root
b) Given the sets $A_{n}=\{n, n+2\}$, where n is a positive integer evaluate
i. $\bigcup_{n=3}^{10} A_{n}$ and $\bigcap_{n=1}^{10} A_{n}$
ii. $\quad \bigcup_{n} A_{n}$ and $\bigcap_{n} A_{n}$
c) Find the domain of the function $f: R \rightarrow R$ defined by $f(x)=\frac{4}{\sqrt{x^{2}-4}} \quad$ (5 marks)
d) Consider the set $A=\left\{11+(-1)^{n} \frac{1}{n}\right\}$ where n is a positive integer
i. Find the supremum and the infimum of A
ii. Find all the limit points of A
e) With an appropriate example, show that a bounded sequence is not necessarily convergent
f) Let A and B be sets. Show that the product order on $A \times B$ defined by $(a, b) \prec(c, d)$ if $a \leq c$ and $b \leq d$ is a partial order on $A \times B$
(4 marks)
g) Prove that the set of integers is countable
(4marks)
h) State the Axiom of choice

QUESTION TWO (20 MARKS)

a) Distinguish the following
i. A restriction and an inclusion map (3 marks)
ii. A countable and uncountable set (3 marks)
iii. A linearly ordered set and a poset (3 marks)
b) Prove the generalized Consider the function $f: R \rightarrow R$ defined by $f(x)=\frac{|x|}{x}: x \neq 0$ and $f(0)=0$. Determine
i. The quotient sets $\frac{R}{f}$
ii. The image $f(R)$
c) Prove that if the limit of a sequence exists, then it is unique

QUESTION THREE (20 MARKS)

a) Let $A_{m}=\{m, 2 m, 3 m, \ldots \ldots \ldots \ldots: m \in N\}$, determine and explain the following sets
i. $\quad A_{3} \cap A_{7}$
ii. $\quad A_{3} \cup A_{7}$ (3 marks)
iii. $\bigcup_{m} A_{m}$
(2 marks)
iv. $\bigcap_{m} A_{m}$
(2 marks)
b) Prove that the intervals $[0,1] \operatorname{and}(0,1]$ are equivalent.
(5 marks)
c) Prove that a countable union of finite sets is countable
(5 marks)

