UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF

BACHELOR OF SCIENCE DEGREE IN MATHEMATICS

MATH 205: ELEMENTS OF SET THEORY

STREAMS: "AS ABOVE"
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 31/3/2021
8.30 AM - 10.30 AM

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE ($\mathbf{3 0}$ MARKS)

a) For each of the following cases, determine whether it represents a function. If it is a function, state whether it is injective
i. To each of the 190 student in math 205, assign a number corresponding to his/her age
ii. To each student in Chuka university, assign a registration number
iii. To each student in first year, assign the semester course units
iv. To each book written by a single author, assign the author
v. To each positive number, assign its square root (5 marks)
b) Given the sets $A_{n}=\{n+1, n+2, \ldots \ldots \ldots . .$.$\} , where \mathrm{n}$ is a positive integer evaluate
i. $\bigcup_{n=3}^{10} A_{n}$ and $\bigcap_{n=1}^{10} A_{n}$
ii. $\quad \bigcup_{n} A_{n}$ and $\bigcap_{n} A_{n}$
c) Find the domain of the function $f: R \rightarrow R$ defined by $f(x)=\frac{4}{\sqrt{x^{2}-4}} \quad$ (2 marks)
d) Consider the set $A=\left\{11+(-1)^{n} \frac{1}{n}\right\}$ where n is a positive integer
i. Find the supremum and the infimum of A
(2 marks)
ii. Find all the limit points of A (1 marks)
e) With an appropriate example, show that a bounded sequence is not necessarily convergent
f) Consider the function $f: R \rightarrow R$ defined by $f(x)=x^{2}$
i. Find the largest set D such that $f: D \rightarrow R$ is injective
ii. Find the smallest set T such that $f: R \rightarrow T$ is onto marks)
g) Prove that the set of integers is countable
(3marks)
h) Prove that if the limit of a sequence exists, then it is unique
(3marks)
i) State the Axiom of choice

QUESTION TWO (20 MARKS)

a) Distinguish the following
i. Injective and surjective functions (2 marks)
ii. A countable and uncountable set (2 marks)
iii. A linearly ordered set and a poset
b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two invertible functions with inverses f^{-1} and g^{-1} respectively.
i. Prove that $\left(f^{\circ} g\right)^{-1}=g^{-1 \circ} f^{-1}$
ii. Given that $f(x)=2 x-3$ and $g(x)=\frac{2 x-7}{5 x+7}$ find $\left(f^{\circ} g\right)^{-1}$
c) Let A and B be sets in a universal set U , prove that $\chi_{\mathrm{A} \cap B}=\chi_{A} \chi_{B}$ where χ_{A} is the characteristic function of A and $\chi_{A} \chi_{B}$ is the product of functions
(6 marks)

QUESTION THREE (20 MARKS)

a) Prove that a composition of two injective functions is injective
b) Prove the distributive laws i.e.
i. $\quad B \cap\left(\bigcup_{k} A_{k}\right)=\bigcup_{k}\left(B \cap A_{k}\right)$
ii. $\quad\left(\bigcap_{k} A_{k}\right)^{c}=\bigcup_{k}\left(A_{k}\right)^{c}$
c) Let $A_{m}=\{m, 2 m, 3 m, \ldots \ldots \ldots \ldots: m \in N\}$, determine and explain the following sets

i.	$A_{3} \cap A_{7}$	(2 marks)
ii.	$A_{3} \cup A_{7}$	$(2$ marks $)$
iii.	$\bigcup_{m} A_{m}$	(1 marks)
iv.	$\bigcap_{m} A_{m}$	(1 marks)

QUESTION FOUR (20 MARKS)

a) The prerequisites in a college is a familiar partial ordering of available classes. Let M be a set of mathematics courses at XYZ college . Define $A \prec B$ if class A is a prerequisite of class B, below is a list of mathematics courses and their prerequisites

Class
Math 122
Math 201
Math 205
Math 206
Math 301
Math 302
Math 401
Math 403

Prerequisite
None
Math 122
Math 122
Math 205
Math 201
Math 301
Math 201,Math 205
math 206, Math 401

Required:
i. Draw an Hasse diagram for the partial ordering of these classes (2 marks)
ii. Find all the minimal and maximal elements of these classes (2 marks)
iii. Determine the first and last element if they exist.
b) Let A be a non empty set and $\mathrm{P}(\mathrm{A})$ be the power set of A ordered with set inclusion.
i. Find the first element and the last element of $P(A)$ explaining each case
ii. Is A well ordered?Verify
iii. Partially ordered? Verify
(4 marks)
c) Let λ be an ordinal number. Prove that $\lambda+1$ is the immediate successor of λ (3 marks)
d) Given a sequence intervals I_{1}, I_{2}, \ldots. such that $I_{1} \supseteq I_{2} \supseteq$ \qquad it is called a 'nested' sequence.
i. Give an example of a nested sequenced of nonempty open intervals whose intersection is empty.
ii. Give an example of a nested sequenced of open intervals whose intersection is not empty
(2 marks)
iii. Prove that intersection that a nested sequence of closed intervals of the form $I_{1} \supseteq I_{2} \supseteq$ \qquad is not empty

QUESTION FIVE (20 MARKS)

a) Prove that the intervals $[0,1] \operatorname{and}(0,1]$ are equivalent. (5 marks)
b) Prove that The unit interval $[0,1]$ is non denumerable (5 marks)
c) Prove that a countable union of finite sets is countable
(5 marks)
d) Prove that every infinite set contains a countable set (5 marks)

