CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

SECOND YEAR EXAMINATION FOR THEAWARD OF DEGREE OF BACHELORS OF SCIENCE IN MATHEMATICS & BA MATHS-ECONS

MATH 206: INTRODUCTION TO REAL ANALYSIS

STREAMS: ""as above" Y2S2 **TIME: 2 HOURS**

DAY/DATE: TUESDAY 10/08/2021 2.30 P.M. – 4.30 P.M.

INSTRUCTIONS:

• Answer question **ALL** the questions.

- Sketch maps and diagrams may be used whenever they help to illustrate your answer.
- Do not write on the question paper.
- Write your answers legibly and use your time wisely.

QUESTION ONE: 30 MARKS

(a) Find if the following sets are bounded or not and if bounded find the sups and infs

(i)
$$S_1 = \{x \in \mathbb{R}: 3 \le x < 7\}$$
 (4 marks)

$$(ii)S_2 = \left\{1 + (-1)^n \frac{1}{n} : n \in \mathbb{N}:\right\}$$

$$(iii)S_2 = \left\{1 + (-1)^n . n : n \in \mathbb{N}:\right\}$$

$$(4 \text{ marks})$$

$$(4 \text{ marks})$$

(iii)
$$S_2 = \{1 + (-1)^n \cdot n : n \in \mathbb{N}: \}$$
 (4 marks)

- (b) Determine the accumulation points of each of the set of real numbers
 - The set of natural numbers N: (i)
 - (ii)
 - (iii) The set of irrational points (4 marks)

(c) Let $A \subseteq \mathbb{R}$ be given by $A = \{x \in \mathbb{R}: 0 < x \le 1\}$. Show that the element $\frac{1}{2} \in A$ is an interior point of A whereas 1 is not (4 marks)

(d) Prove that if a function is differentiable at a point x = a then the function is also continuous at the same point. (4 marks)

- (e) Show that the subset $A \subset \mathbb{R}$ is closed if and only if $A = \overline{A}$ (4 marks)
- (f) State without proof the following properties for real numbers.
 - (i) Completeness axiom (2 marks)
 - (ii) Archimedean Property (1 marks)

QUESTION TWO: (20 MARKS)

- (a) Given that $A \subseteq \mathbb{R}$, define an interior point x of A. Hence show that if A is open if and only if A is equal to its interior set A^0 (5 marks)
- (b) Prove that a limit of function exists then that limit is unique (4 marks)
- (c) Denote the closure of a subset $B \subset \mathbb{R}$ by \overline{B} . Prove that $B = \overline{B}$ if and only if B is closed (5 marks)
- (d) Find the limit superior and limit inferior of the sequence

$$X_n = \left(1 + \frac{n}{n+1} + \cos\frac{n\pi}{2}\right) \colon n \in \mathbf{N}$$
 (6 marks)

QUESTION THREE: (20 MARKS)

- (a) Define a Cauchy sequence (x_n) in R. Hence prove that if a sequence (x_n) is convergent then it is Cauchy. (5 marks)
- (b) Using the definition of limit of a function, prove that

(i)
$$\lim_{n\to\infty} \left(\frac{(-1)^n}{n+5}\right) = 0$$
 marks) (3

(ii)
$$\lim_{x\to 2} (x^3 + x - 10) = 0$$
 (4 marks)

(c) Using the function $f(x) = x^{\frac{1}{3}}$ at the point x = 0, show that the property of continuity does not necessarily imply differentiability. (8 marks)
