CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF COMMERCE

MATH 206: INTRODUCTION TO REAL ANALYSIS

STREAMS: Y2S2
TIME: 2 HOURS
DAY/DATE: TUESDAY 02/02/2021
8.30 AM - 10.30 AM

INSTRUCTIONS:

- Answer question ALL the questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Using the concepts of limiting points and neighborhoods, explain whether the following sets are open, closed or none.
(i) $S=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots\right\}$
(ii) $S=\left\{(-1)^{n}: n \in \mathbf{N}:\right\}$
(4marks)
(b) Let a and b be non-negative real numbers. Prove that
(i) there exist always a non-negative real number a^{-1}
(ii) $\quad a<b$ if and only if $a^{2}<b^{2}$
(c) Given the set $A=\{x \in \mathbb{R}: a \leq x<b\}$. Determine if possible, the lower boundary, infimum, upper boundary and supremum of the set.
(d) Prove that if x and y are positive real numbers then
(i) $\mathrm{x}+\mathrm{y}$ is also positive
(ii) $\mathrm{x}<\mathrm{y} \Rightarrow \frac{1}{y}<\frac{1}{x}$
(e) Define a countable set. Hence illustrate that Illustrate that rational numbers between $[0,1]$ is countable the set of real numbers \mathbb{R} is uncountable.
(f) Using the first principle of the definition of the derivative of a function f at x find the derivative of the function $f(x)=\sqrt{x}$

QUESTION TWO: (20 MARKS)

(a) Given that $A \subseteq \mathbb{R}$, show that A is open iff $A=A^{0}$
(b) Prove that a limit of function exists then that limit is unique
(c) State the conditions to be satisfied for a function to be continuous at a point $x=c$. Hence show that the functions $f(x)=|x-2|$ is contionus at the point $\mathrm{x}=2$ but not differentiable at the same point.

QUESTION THREE: (20 MARKS)

(a) Define a Cauchy sequence $\left(x_{n}\right)$ in R . Hence prove that if a sequence $\left(x_{n}\right)$ is convergent then it is Cauchy.
(b) Find the limit superior and limit inferior of the sequence

$$
\begin{equation*}
X_{n}=\left(1+\frac{n}{n+1}+\cos \frac{n \pi}{2}\right): n \in \mathbf{N} \tag{6marks}
\end{equation*}
$$

(c) Hence show that the function $f(x)=2 x$ is Riemann Integrable on the interval $[0,1]$

