CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE IN BACHELOR OF

MATH 210(201): LINEAR ALGEBRA I

STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDAY 3/5/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

- Answer question ALL the questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Solve the following
(a) ex $=\pi(b) 3 x-4-x=2 x+3$ (c) $7+2 x-4=3 x+3-x$ (6 marks)
(b) Consider the system in unknowns x and y

$$
\begin{gathered}
x-a y=1 \\
a x-4 y=b
\end{gathered}
$$

Find which values of a does the system have a unique solution, and for which pairs of values (a, b) does the system have more than one solution.
(c) Show that the determinant of the matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is given by $a_{11} a_{22}-a_{12} a_{21}$
(3 marks)
(d) (i) When is a matrix A said to be in Echelon form?
(ii) Determine the rank of the following matrix by reducing the matrix to echelon form
$A=\left(\begin{array}{llll}6 & 3 & 1 & 4 \\ 2 & 1 & 3 & 0 \\ 4 & 2 & 6 & 0 \\ 6 & 3 & 1 & 4\end{array}\right)$
(e) Determine if $S=\{(1,1),(, 1-1)\}$ is a basis for R^{2}
(f) Evaluate the WROSKIAN $w\left(\sin x, \cos x, \sin 2 x, \frac{3}{4} \pi\right)$
(g) Let $V=\mathbb{R}^{3}$ and $W=\{(a, b, 0): a, b \in \mathbb{R}\}$. Determine if W is a subspace of \mathbb{R}^{3}.

QUESTION TWO: (20 MARKS)

(a) Determine the value of ' w ' so that following system of equations has
(i) Unique solution
(ii) Infinitely many solutions.
(iii) No solution

$$
\begin{gathered}
x_{1}-3 x_{3}=-3 \\
2 x_{1}+a x_{2}-x_{3}=-2 \\
x_{1}+2 x_{2}+a x_{3}=1
\end{gathered}
$$

(b) Find the determinant of matrix A by first partitioning the matrix

$$
\begin{align*}
& A=\left(\begin{array}{cccc}
3 & 6 & 9 & 3 \\
-1 & 0 & 1 & 0 \\
1 & 3 & 2 & -1 \\
-1 & 2 & -1 & 1
\end{array}\right) \text { such that } \mathrm{A}_{11}=\left(\begin{array}{cc}
3 & 6 \\
-1 & 0
\end{array}\right), \mathrm{A}_{12}=\left(\begin{array}{ll}
9 & 3 \\
1 & 0
\end{array}\right), \mathrm{A}_{21}=\left(\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right) \\
& \mathrm{A}_{22}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \tag{6marks}
\end{align*}
$$

(c) Determine if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined as $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}, x_{1}-x_{2}, x_{2}+2 x_{1}\right)$ is a linear transformation. (6 marks)

QUESTION THREE: (20 MARKS)

a) Solve the system of equation using Cramer's Rule

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=2 \\
& 3 x_{1}+6 x_{2}+x_{3}=1 \\
& 3 x_{1}+3 x_{2}+2 x_{3}=3
\end{aligned}
$$

b) Let $V=R^{3}$ and $S=\{(2,3,5),(1,2,4),(-2,2,3)\}$. Determine if $(10,1,4) \in L(S)$, where $\mathrm{L}(\mathrm{S})$ is a subset of V .
c) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $(x)=\left(\begin{array}{ccc}2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0\end{array}\right)\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.

Find the Basis for $R(T)$ and the Nullity (T).

