CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 211/221: CALCULUS II

STREAMS:	TIME: 2 HOURS
DAY/DATE: FRIDAY 13/08/2021	2.30 P.M - 4.30 P.M.
INSTRUCTIONS	
• Answer ALL the questions on the question paper.	
• Do not write anything on the question paper.	
QUESTION ONE (30 MARKS) – COMPULSORY.	
(a) Evaluate the following:	
(i) $\int_0^1 x(5-x^2)^5 dx.$	(3 Marks)
(ii) $\int x^2 \sin x dx$.	(4 Marks)
(iii) $\int e^{-x} dx$	(3 Marks)
(iv) $\int \frac{11x+12}{(2x+3)(x+2)(x-3)} dx.$	(5 Marks)
(b) Find the area bounded by the curves $y = x^2$ and $y = 2x$.	(4 Marks)
(c) A ball is dropped from a tower 450m above the ground. The distant	ce covered by the ball
is given by $s = 4.9t^2$.Calculate the velocity with which the ball is t	travelling when it hits
the ground.	(3 Marks)
(d) Use the trapezoidal rule with four strips to evaluate $\int_{1}^{2} x^{3} dx$.	(4 Marks)

(e) Calculate the area of the surface generated by revolving the curve $y = x^3$ between $0 \le x \le \frac{1}{2}$ about the x-axis. (4 Marks)

QUESTION TWO (20 MARKS)

- (a) Determine f(x) given that $\frac{dy}{dx} = 2x^2 3x 4$ and f(0) = 2. (3 Marks)
- (b) Find the volume of the solid of revolution of the area under the curve $y = x^2 + 1$ from x = 0 to x = 2 about the x-axis. (5 Marks)
- (c) Determine the area bounded by the curves $y = x^3$, y + x = 0 and 2x 3y = 20.
- (d) Evaluate $\int_0^1 \frac{\ln x}{x} dx$. (4 Marks)

QUESTION THREE (20 MARKS)

- (a) Evaluate $\int_0^{\pi} \int_0^{\sin x} y dy dx$. (5 Marks)
- (b) Approximate the integral of the function $\int_{1}^{2} \frac{dx}{x}$ by the mid-point rule and obtain the actual error using 5 strips. (5 Marks)
- (c) Evaluate $\int \sin^2 4x \cos 4x$ (4 Marks)

(d) Determine the length of the arc $y = \frac{1}{2}x^2$ joining the origin O (0,0) to the point $(1, \frac{1}{2})$.

(6 Marks)

(8 Marks)

.....