CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION ARTS, BACHELOR OF ARTS (MATHEMATICS ECONOMICS)

MATH 220/222: VECTOR ANALYSIS

STREAMS: BSC MATHS, B.ED SC/ARTS, BA ECOM MATH Y2S2
TIME: 2 HOURS
DAY/DATE: TUESDAY 10/08/2021
11.30 A.M - 1.30 P.M.

INSTRUCTIONS

Answer ALL questions
Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Distinguish the following terms as used in vector analysis:
(i) Linearly dependent vectors and Linearly independence vectors (2 marks)
(ii) The dot product and cross product of two vectors \vec{A} and \vec{B} (2 marks)
(iii) The gradient of a scalar function \emptyset and the divergence of the vetor \vec{V} (2 marks)
(iv) An irrotational vector and a solenoidal vector $\vec{V} \quad$ (2 marks)
(b) (i) Show that addition of two vectors is commutative
(4 marks)
(ii) Prove that if \vec{a} and \vec{b} are non-collinear vectors then $x \vec{a}+y \vec{b}=0$ implies $x=y=0$
(4 marks)
(c) Given $\vec{A}=A_{1} \hat{\imath}+A_{2} \hat{\jmath}+A_{3} \hat{k}$ and $\vec{B}=B_{1} \hat{\imath}+B_{2} \hat{\jmath}+B_{3} \hat{k}$, show that

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \tag{4marks}\\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right|
$$

(d) Using vector method find the area of the triangle having vertices
$P(2,3,5), Q(4,2,-1), R(3,6,4)$
(5 marks)
(e) If $\vec{A}=\left(2 x^{2} y-x^{4}\right) \hat{\imath}+\left(e^{x y}-y \sin x\right) \hat{\jmath}+\left(x^{2} \cos y\right) \hat{k}$, find $\frac{\delta^{2} A}{\delta x \delta y}$ (3 marks)
(f) State without proof the Green's theorem in a plane

QUESTION TWO: (20 MARKS)

(a) Find the equation for the plane perpendicular to the vector $\vec{A}=2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$ and passing through the terminal point of the vector $B=\hat{\imath}+5 \hat{\jmath}+3 \hat{k}$
(b) Find the work done in moving a particle in a force field given by

$$
\vec{F}=(2 x y) \hat{\imath}-(5 z) \hat{\jmath}+(10 x) \hat{k} \text { along } x=t^{2}+1, y=2 t^{2}, z=t^{3} \text { from } t=1 \text { to } t=2
$$

(c) Show that $\nabla \cdot \nabla \emptyset=\nabla^{2} \emptyset$, where $\nabla^{2}=\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}}$ denotes the laplacian operator.
(5 marks)
(d) Given that $\overrightarrow{\mathrm{A}}=\left(3 \mathrm{x}^{2}+6 \mathrm{y}\right) \hat{\imath}-14 \mathrm{yz} \hat{\jmath}+20 \mathrm{xz}^{2} \hat{\mathrm{k}}$. Evaluate $\int_{C} \vec{A} \cdot \mathrm{~d} \vec{r}$ between the points $(0,0,0)$ and $(1,1,0)$

QUESTION THREE: (20 MARKS)

(a) (i)Given that $\vec{A}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \widehat{k}$.Find the constants a, b and c such that the vector \vec{A} is irrotational. (3 marks)
(ii) Hence show that the vector \vec{A} in (c,(i)) can be expressed in as a gradient of a scalar function \varnothing
(b) State without proof the Frenet-Serret formulas
(3 marks)
Hence given the space curve defined by $x=3 \operatorname{cost}, y=3 \sin t, z=4 t$. Find
(i) The tangent vector $\overrightarrow{\mathrm{T}}$
(3 marks)
(ii) The principal normal $\overrightarrow{\mathrm{N}}$
(4 marks)

