CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 123: VECTORS AND MECHANICS

STREAMS:
TIME: 2 HOURS
DAY/DATE: TUESDAY 02/02/2021
8.30 AM - 1.30 PM

INSTRUCTIONS:

All questions are compulsory
Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

QUESTION ONE (30 MARKS)

(a) Define the following terms:

(i)	Vector quantity	$(1 \mathrm{mark})$
(ii)	Mechanics	$(1 \mathrm{mark})$
(iii)	Projectile	$(1 \mathrm{mark})$
(iv)	Acceleration	$(1 \mathrm{mark})$
(v)	Velocity	$(1 \mathrm{mark})$

(b) Determine the angle between the vectors $\hat{a}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\hat{b}=5 \hat{\imath}-5 \hat{\jmath}+\hat{k}$. (3 marks)
(c) A projectile is launched at an initial velocity of $330 \mathrm{~m} / \mathrm{s}^{2}$ at an angle of 60° to the horizontal. Determine its range.
(d) Determine the values of \propto such that the vectors $\hat{a}=\propto-2 \hat{\jmath}+\hat{k}$ and $\hat{b}=2 \propto \hat{\imath}+\propto \hat{\jmath}-4 \hat{k}$ are perpendicular.
(4 marks)
(e) A particle moving in a straight line with constant acceleration travels 10 m in the first second and 15 m in the second second. Find the distance travelled in the third second.
(f) Determine the volume of the parallelepiped spanned by the vectors $\hat{a}=\hat{\imath}+\hat{k}, \hat{b}=\hat{\imath}+\hat{\jmath}$ and $\hat{c}=\hat{\jmath}+\hat{k}$.
(4 marks)
(g) Given $\overrightarrow{A B}=\hat{a}$ and $\overrightarrow{A C}=\hat{b}$, show that the area of the triangle ABC is given by

$$
\begin{equation*}
\text { Area }=\frac{1}{2} \sqrt{(a b)^{2}-(\widehat{a} . \hat{b})^{2}} \tag{4marks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

A helicopter, initially at rest on the ground, rise vertically with constant acceleration. When it is at a height of 60 m , its upward speed is $5 \mathrm{~m} / \mathrm{s}$. When it is at a height of 240 m , and still rising, an object A is released from the helicopter. Using $g=10 \mathrm{~m} / \mathrm{s}^{2}$, calculate:
(i) The initial velocity of A.
(4 Marks
(ii) The time that A takes to reach the ground.
(5 Marks
After A is released, the helicopter continues to rise with a different constant acceleration. When it is at a height of 350 m and rising with a speed of $15 \mathrm{~m} / \mathrm{s}$, a second object B is released.
(iii) Show that B takes 10 s to reach the ground.
(5 Marks)
(iv) Find the time that elapses between the impacts of A and B on the ground. (6 Marks)

QUESTION THREE (20 MARKS)

(a) Distinguish between vector and scalar quantities.
(b) A particle of mass $m \mathrm{~kg}$ accelerates at ams^{-2} due to an application of a force $F \mathrm{~N}$ such that its velocity changes from the initial value V_{0} to a final value V after t seconds. Show that $a=\frac{V^{2}-V_{0}{ }^{2}}{2 S}$ where S is the displacement.
(c) A stone is dropped from a tower 125 m high. When it has fallen through 20 m , a second stone is thrown vertically downwards with a speed ums^{-1} from the top of the tower. If both stones reach the ground at the same time, calculate the velocity with which the second stone hits the ground.

