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QUESTION ONE (30 MARKS)

a) Let *be a binary operation on the set of positive integers Determine whether or not * is
Commutative and Find an identity element with respect to * if it exists

a) a * b = ¢, where c is the smallest integer between a and b
b) a*b = c, where c is 5 more than a + b (4 marks)

a) Let SL(2,Z)denote the set of all 2x2 matrices with integer coefficients, whose

determinant is one. Verify whether or not SL(2,Z)is a group under matrix multiplication
(5 marks)



c) Given a group G, define the centre of G,(z(G)) and show that it is a normal subgroup
of G (4 marks)

d) Let G and H be groups and @: G = H be a homomorphism. Define the kernel of @.
Hence show that a homomorphism@: G — H is injective if and only if ker® = {e}

(4 marks)
(2 marks)
e) Suppose a,b and c are elements of an integral domain D such that ab=ac and a # 0.
Prove that b=c (3 marks)
f) Verify whether or not the following statements are true about groups
i. A group of order 21 has a subgroup of order 5 (2 marks)
ii. A group of order 7 is abelian (3 marks)

ii.  Show that the set S of permutation mappings given below forms a cyclic group.

o 1=(1 3 34=G 3 2)2=G 3 )= 1 2)sm

QUESTION TWO (20 MARKS)

a) (i) Express the product (1 2 7 3 4)(5 6) in S;as a single permutation in matrix form

(2marks)
. 1 2 34 5 6 7 8 9 .
(1) Express (7 8 594 2 16 3) as a product of disjoint cycles in Sq

(2marks)
(ii1) Given that h = (1 2 3 ) is a permutation in S,. Show that h™1 o h = ¢

31 42 *
(3marks)
b) Prove that every permutation can be written as as product of transpositions
(5 marks)

c) Let n be a positive integer. Define ¢:(Z,4+) = (Z,,+,) as ¢(k) = k ,k € Z and

where k denotes the remainder of division of k by n.

i.  Show that ¢ is a group homomorphism (3 marks)
ii.  Find ker ¢ (2 marks)
iii.  Find the index [Z : ker¢] (2 marks)



QUESTION THREE (20 MARKS)

a) Let G be a group in which every element has order at most 2. Show that G is abelian

(3 marks)
b) Show that in an abelian group G, the set of all elements with finite order in G is a
subgroup of G. (5 marks)

c) Let G be the set of eight elements given by G = {£1,+i,+ j,£k} with multiplication given
byi’=j’=k*>=-1,jj=—ji=k, jk=—kj=i, ki=—ik=j.
i.  Construct a multiplication table for the group. (6 marks)
ii.  Consider the cyclic group group H =<1,—1> . list all the distinct cosets of H in G.
Is H a normal subgroup of G? (6marks)

QUESTION FOUR (20 MARKS)

a) Let G be a group with identity e. Prove that:

(i)Ifa,b € G,then (ab)™! =b1a™? (2 marks)

(i) If (ab)? = a’b? V a,b € G, then G is abelian (3 marks)
b) )Let H be a subgroup of G. Show that the following statements are equivalent.

(1) H is a normal subgroup of G

(i) xHx '=H Vx€G

(ili) xH =Hx Vx € G

(iv) (xH)(yH) = xyH (10 marks)
c) Let G = (R", x), the group of positive real numbers under multiplication and

H = (R, +), the additive group of real numbers. Show that the mapping given by

@(x) = In x is an Isomorphism.

(5 marks)

QUESTION FIVE (20 MARKS)

a) State without proof Sylow’s theorems (6 marks)
b) Using the theorems in (a) above, show that a group of order 15 is cyclic (8 marks)

¢) Prove that a group of order p*;where p is prime is abelian (6 marks)



