COSC 811

UNIVERSITY

CHUKA

UNIVERSITY EXAMINATIONS

CHUKA & EMBU

FIRST YEAR EXAMINATIONS FOR THE AWARD OF MASTERS OF SCIENCE IN APPLIED COMPUTER SCIENCE

COSC 811: MODELING AND SIMULATION

STREAMS: BSC (AGRI, AGEC & AGED) Y3S1

DAY/DATE: TUESDAY 06/04/2021 INSTRUCTIONS: Answer Any Three Questions

QUESTION ONE

a. Explain the following terms giving examples in each case

	i.	Iconic models	[2 marks]	
	ii.	Analogue models	[2 marks]	
	iii.	Symbolic models.	[2 marks]	
	iv.	deterministic models	[2 marks]	
	v.	Stochastic models.	[2 marks]	
b.	Explain the steps involved on Frequency test for pseudo random numbers hence use the			
	frequency test to compute the P-value of the bit string: 1011010101 . (6 marks			

c. Given the probability density function (4 marks)

$$f(x) = \begin{cases} 3x^2 &, 0 \le x \le 1\\ 0 &, \text{ otherwise} \end{cases}$$

Use the inverse transformation method to generate the random variates

CHUKA UNIVERSITY

TIME: 3 HOURS

2.30 P.M. - 5.30 P.M.

COSC 811

QUESTION TWO

a. Define the term system in general, and state the five main features of a	ı system [[7 marks]
---	------------	-----------

- b. Explain the Four requirements of a conceptual model [8 marks]
- c. Define the following terms
 - i. Reliability function
 - ii. The mean time to failure function (MTTF)
 - iii. The failure rate function
- d. The lifetime distribution function follows an exponential distribution with parameter λ ,

given as

 $F(t) = 1 - \exp(-\lambda t),$

Calculate the mean time to failure function	(MTTF)	[5 marks]
Calculate the mean time to familie function	(171111)	

QUESTION THREE

b.

c.

d.

a. Briefly explain the following methods of generating random numbers

i.	Composite generators	[3 marks]				
ii.	Tausworthe generators	[3 marks]				
iii.	The lagged Fibonacci generators	[3 marks]				
Define the following terms as used in modeling [4 marks]						
i.	The real system					
ii.	The experimental frame model					
iii.	The base model					
iv.	lumped model					
Explain black Black-box modeling by the aid of a diagram [3 marks]						
Given that the a hardware system has been working for 1000 hours during which the system						
failed 30 times and the total repair time for all the failures is 150 hours. If the hardware						

failure time and repair time follow the exponential distributions. Determine the reliability function. [3 marks]

e. Outline at least four main methods of representation in a the conceptual model [4 marks]

COSC 811

QUESTION FOUR

- a. Explain the key components of the conceptual model [8 marks]
- b. Given that a computing system has three states after each run. The states are perfect, degraded, and failed states denoted by state 1, 2 and 3. The state of the current run will affect the state of the next run and the matrix of one step transition probability is given as

$$P = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.1 & 0.3 & 0.6 \end{bmatrix}$$

- i. Obtain the two-step transition matrix according to the Chapman-Kolmogorov model equation. [3 marks]
- ii. If the system initially stays at a perfect state, and the probability that the system still stays at that state after 2 runs is given as

$$p_{11}(0,2) = 0.56$$
.

Obtain the four-step transition matrix and determine the probability that the system does not stay at the failed state after 4 runs [3 marks]

- c. Define the probability density function of the following methods of generating stochastic variates giving the expressions for the cumulative density function, the expectation and variance.
 - i. The uniform distribution [3 marks]
 - ii. The Exponential distribution: [3 marks]

QUESTION FIVE

- a. Define the term pseudo-random numbers and state the conditions to be satisfied by an acceptable method for generating random number sequences or bits. [6 marks]
- b. State the advantages of the congruential method of generating random numbers and explain the recursive relationship it uses to generate the random numbers. [5 marks]
- c. Given that

$$f(x) = \begin{cases} 5x & 0 \le x \le 4\\ x-2 & 4 < x \le 10 \end{cases}$$

Apply the inverse transformation method and devise specific formulae that yield the value of variety x given a random number r. Note that f(x) needs to be normalized.) [9 marks]