CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN APPLIED COMPUTER SCIENCE

COSC 371/ACSC 374: COMPUTER SCIENCE

STREAMS: BSC COMP SCI AND APPLIED COMP SCI TIME: 2 HOURS

DAY/DATE: TUESDAY 02/11/2021

2.30 P.M – 4.30 P.M.

INSTRUCTIONS:

Attempt question ONE in section A and any other two questions in section B

SECTION A (30 MARKS)-COMPULSORY

QUESTION ONE

a) Using examples, discuss the following transformations:	[6 marks]
i. Reflection	
ii. Shear mapping	
b) Define the following terms:	[8 marks]
i. Computer graphic.	
ii. Scalar.	
iii. Point.	
iv. Line.	
c) List FOUR input devices of multimedia.	[4 marks]
d) Briefly explain the term scan conversion.	[2 marks]
e) Define refresh frame buffer.	[2 marks]

f)	Define the term aliasing and how to prevent it.	[4 marks]
----	---	-----------

g) Differentiate between lossy and lossless compression algorithms. [4 marks]

SECTION B: ATTEMPT ANY TWO QUESTIONS (40 MARKS) QUESTION TWO (20 MARKS)

a) Differentiate between a local illumination model and global illumination model

[4 marks]

b) Draw a line using the digital Differential analyzer line drawing algorithm starting		
at point (4,4) and ends at point (12,10)	[8 marks]	
c) Discuss the Cohen- Sutherland line clipping algorithm.	[8 marks]	

QUESTION THREE (20 MARKS)

a)	Explain the main functions used in OpenGL.	[8 marks]		
b)	b) Explain the meaning of the term parallel projection and explain where it is most			
	applicable.	[6 marks]		
c)	Find the angle between vectors $(3, 7)$ and $(-4, 5)$.	[6 marks]		
QUESTION FOUR (20 MARKS)				
a)	Differentiate between diffuse reflection and specular reflection.	[4 marks]		
b)	i) Derive the following Rotation Identity Matrix:	[4 marks]		
	$x' = x \cos(\theta) - y \sin(\theta)$			
	$y' = x \sin(\theta) + y \cos(\theta)$			
ii) Find the transformed point, P', caused by rotating $P=(3, 2)$ about the origin				
	Through an angle of 90°.	[4 marks]		
c) Using a suitable diagram briefly explain the various components and their				
	functions in a CRT.	[8 marks]		
QUESTION FIVE (20 MARKS)				
i. ii.		[8 marks]		
	coordinates method	[6 Marks]		

c) Assuming that a certain full-color (24 bit per pixel) RGB raster system has a 512 by 512 frame buffer, how many distinct color choices (intensity levels) would be available? [6 marks]