CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN APPLIED COMPUTER SCIENCE

COSC 371/ACSC 374: COMPUTER SCIENCE
STREAMS: BSC COMP SCI AND APPLIED COMP SCI
TIME: 2 HOURS

DAY/DATE: TUESDAY 02/11/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

Attempt question ONE in section A and any other two questions in section B

SECTION A (30 MARKS)-COMPULSORY

QUESTION ONE

a) Using examples, discuss the following transformations:
[6 marks]
i. Reflection
ii. Shear mapping
b) Define the following terms:
[8 marks]
i. Computer graphic.
ii. Scalar.
iii. Point.
iv. Line.
c) List FOUR input devices of multimedia.
d) Briefly explain the term scan conversion.
e) Define refresh frame buffer.
f) Define the term aliasing and how to prevent it.
g) Differentiate between lossy and lossless compression algorithms. [4 marks]

SECTION B: ATTEMPT ANY TWO QUESTIONS (40 MARKS) QUESTION TWO (20 MARKS)

a) Differentiate between a local illumination model and global illumination model
[4 marks]
b) Draw a line using the digital Differential analyzer line drawing algorithm starting at point $(4,4)$ and ends at point $(12,10)$
c) Discuss the Cohen- Sutherland line clipping algorithm.
[8 marks]

QUESTION THREE (20 MARKS)

a) Explain the main functions used in OpenGL.
b) Explain the meaning of the term parallel projection and explain where it is most applicable.
c) Find the angle between vectors $(3,7)$ and $(-4,5)$.

QUESTION FOUR (20 MARKS)

a) Differentiate between diffuse reflection and specular reflection. [4 marks]
b) i) Derive the following Rotation Identity Matrix:

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

ii) Find the transformed point, P ', caused by rotating $\mathrm{P}=(3,2)$ about the origin Through an angle of 90°.
c) Using a suitable diagram briefly explain the various components and their functions in a CRT.
[8 marks]

QUESTION FIVE (20 MARKS)

a) Explain the following surface detection methods:
[8 marks]
i. Z-Buffer Method
ii. Binary Space Partitioning(BSP) Tree Method
b) Draw a circle centered at point $(5,5)$ and has a radius of 6 units using the polar coordinates method
c) Assuming that a certain full-color (24 bit per pixel) RGB raster system has a 512 by 512 frame buffer, how many distinct color choices (intensity levels) would be available?
[6 marks]

