CHUKA

UNIVERSITY EXAMINATIONS

THIRD YEAR FIRST RESIT / SPECIAL SEMESTER EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE COMPUTER SCIENCE / BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

COSC 340: THEORY OF COMPUTATION

STREAMS: BSC. COMP SCI / BSC. APPLIED COMP.SCI
TIME: 2 HOURS

DAY/DATE: TUESDAY 02/02/2021
11.30 A.M. - 1.30 P.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

SECTION A

QUESTION ONE [30 MARKS]

a) Explain the purpose of the Theory of Computation
b) Briefly describe each of the three areas of the theory of computation and explain the benefits of each to the field of computing
c) Using your knowledge from theory of computation explain what an algorithm is
d) Draw and define an example Deterministic Finite Automaton
e) Explain any three areas where Push Down Automaton are used
f) Giving examples define the three regular expressions on languages
g) Identify any two differences between the input alphabet and the tape alphabet of a deterministic Turing Machine

SECTION B

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO [20 MARKS]
a) Consider the following substitution rules of a Context Free Grammar
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{aA}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{bB}$

Use the above to identify:
i. Terminal
[2 Marks]
ii. Start variable
iii. Variables
b) Use the rules of the grammar in a) above to derive any three strings of the format $\{\mathrm{a}, \mathrm{b}\}^{*}$
c) Generate a parse tree to derive each of the strings in b) above
d) Let n be a positive integer. If n^{2} is even, then n is even.
i. Prove the theorem using proof by contradiction
[5 Marks]
ii. Prove the theorem using proof by induction
[4 Marks]

QUESTION THREE [20 MARKS]

a) You are given the following language

$$
\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>=0\right\}
$$

i. Describe this language
ii. Give examples of any two strings of this language
iii. Explain if the language is regular or irregular. Justify your answer
b) Discuss the Entscheidungsproblem explaining its contribution to the of theory of computation
c) Using appropriate diagrams differentiate between Deterministic Finite Automaton and Non Deterministic Finite Automaton
d) Making reference to Computer storage highlight the different computational models

QUESTION FOUR [20 MARKS]

a) Discuss the pigeon hole principle in theory of computation
b) Assume we have two regular languages $\mathrm{L}(\mathrm{A})=\{0,1\}$ and $\mathrm{L}(\mathrm{B})=$ $\{010,001,110\}$. Show the results of the regular operations below on the two languages:
i. Conjunction of Language $L(A)$ and Language $L(B) \quad$ [3 Marks]
ii. Star of Language $L(B)$
iii. Union of Language $L(A)$ to $L(B)$
c) Describe any three types of Turing Machines
[6 Marks]

QUESTION FIVE [20 MARKS]

a) A toll gate to a park opens after a person inserts coin denomination of Ksh. 20 or more. Assuming that a certain visitor inserts three coin denominations in a sequence of Ksh. 5, Ksh. 5 and Ksh. 10 and assuming that no change is given back:
i. Draw the diagram of the DFA machine
[5 Marks]
ii. Formally define the machine
b) Making reference to the concept of algorithms and running time of algorithms, discuss the Theory of Complexity, a branch of Theory of Computation
c) Let Σ be an alphabet and let $A \in \Sigma^{*}$ be a language over the alphabet. Language A is decidable. Explain why Language A is said to be decidable

