CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR FIRST RESIT / SPECIAL SEMESTER EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE COMPUTER SCIENCE / BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

COSC 340: THEORY OF COMPUTATION

STREAMS: BSC. COMP SCI / BSC. APPLIED COMP.SCI

DAY/DATE: TUESDAY 02/02/2021

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

SECTION A

QUESTION ONE [30 MARKS]

a)	Explain the purpose of the Theory of Computation	[2 Marks]
b)	Briefly describe each of the three areas of the theory of computation and explain the	
	benefits of each to the field of computing	[6 Marks]
c)	Using your knowledge from theory of computation explain what an algorithm	is
		[2 Marks]
d)	Draw and define an example Deterministic Finite Automaton	[6 Marks]
	Eveloir any three areas where Dush Davin Automaton are used	[6 Montrol
e)	Explain any three areas where Push Down Automaton are used	[6 Marks]

TIME: 2 HOURS

11.30 A.M. – 1.30 P.M.

- f) Giving examples define the three regular expressions on languages [6 Marks]
- g) Identify any two differences between the input alphabet and the tape alphabet of a deterministic Turing Machine
 [2 Marks]

SECTION B

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO [20 MARKS]

- a) Consider the following substitution rules of a Context Free Grammar S → AB
 - $\begin{array}{c} A \rightarrow a \\ A \rightarrow a A \end{array}$
 - $B \rightarrow b$
 - $B \rightarrow bB$

Use the above to identify:

i.	Terminal	[2 Marks]
ii.	Start variable	[1 Mark]
iii.	Variables	[2 Marks]

[3 Marks]

b) Use the rules of the grammar in a) above to derive any three strings of the format {a, b} *

- c) Generate a parse tree to derive each of the strings in b) above [3 Marks]
- d) Let n be a positive integer. If n^2 is even, then n is even.

i.	Prove the theorem using proof by contradiction	[5 Marks]
ii.	Prove the theorem using proof by induction	[4 Marks]

QUESTION THREE [20 MARKS]

a) You are given the following language

L = {0ⁿ1ⁿ | n>=0}
i. Describe this language
ii. Give examples of any two strings of this language
iii. Explain if the language is regular or irregular. Justify your answer
[2 Marks]
b) Discuss the Entscheidungsproblem explaining its contribution to the of theory of

COSC 340

c)	c) Using appropriate diagrams differentiate between Deterministic Finite Automaton a					
	Non Dete	rministic Finite Automaton	[5 Marks]			
d)	Making re	eference to Computer storage highlight the different computational me	odels [4 Marks]			
QUESTION FOUR [20 MARKS]						
a)	Discuss th	ne pigeon hole principle in theory of computation	[5 Marks]			
b)	Assume we have two regular languages L (A) = $\{0, 1\}$ and L (B) =					
	$\{010,001,110\}$. Show the results of the regular operations below on the two languages:		iguages:			
	i. Co	onjunction of Language L(A) and Language L(B)	[3 Marks]			
	ii. St	ar of Language L(B)	[3 Marks]			
	iii. U	nion of Language L(A) to L(B)	[3 Marks]			
c)	Describe	any three types of Turing Machines	[6 Marks]			
OUESTION FIVE [20 MARKS]						

QUESTION FIVE [20 MARKS]

a)	A toll gate to a park opens after a person inserts coin denomination of Ksh. 20 or more. Assuming that a certain visitor inserts three coin denominations in a sequence of Ksh. 5 Ksh. 5 and Ksh. 10 and assuming that no change is given back:	
	i. Draw the diagram of the DFA machine	[5 Marks]
	ii. Formally define the machine	[5 Marks]
b)	b) Making reference to the concept of algorithms and running time of algorithms, discus	
	the Theory of Complexity, a branch of Theory of Computation	[6 Marks]
c)	c) Let Σ be an alphabet and let $A \in \Sigma^*$ be a language over the alphabet. Language A	
	decidable. Explain why Language A is said to be decidable	[4 Marks]