UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN COMPUTER SCIENCE

COSC 0170: MATHEMATICS FOR COMPUTING 1

STREAMS: DIP. COMPUTER SCIENCE

CHUKA

TIME: 2 HOURS

8.30 A.M. – 10.30 A.M.

(4 marks)

DAY/DATE: TUESDAY 04/12/2018

INSTRUCTIONS:

• Answer question ONE and any other TWO.

QUESTION ONE

- (a) Define the following terms as used in elementary logic
 - (i) Simple statement
 - (ii) Compound statement
 - (iii) Tautology
 - (iv) Fallacy

(b) Simply
$$\frac{7i-2}{i}$$
 (3)

marks)

(c) Solve the quadratic equation $2x^2-5x-3=0$ by the factorization method. (4 marks)

- (d) Find the equation of a line whose gradient is $\frac{1}{2}$ and passing through the point (0, 1).
- (3 marks) (e) Find the equation of a circle centred -(4,3) and has radius 7 units. (4 marks)

(f) Solve the inequality
$$3 < \frac{6-3x}{2} < 6$$
 and hence plot the solution on a number line.
(5 marks)

(g) Given
$$f(x)=4x^2+5x-3$$

 $g(x)=-7x+x^2$
 $h(x)=3x^3-6x^2+7$
find (i) $f(x)+g(x)$
(ii) $h(x)+g(x)-f(x)$
(iii) $f(x)-h(x)$ (4 marks)

(h) Differentiate the function
$$f(x) = \frac{x}{1+x^2}$$
 (3 marks)

QUESTION TWO

(a) In how many ways can the letters of the word MISSISSIPPI be arranged so that the vowels come together? (4 marks)

$$B = (1, 2, 3, 4, 5)$$

$$C = (2, 4)$$

$$D = (1, 2, 3)$$
Find (i) (B U C) \cap D
(ii) B U (C \cap D)

marks)

(i) If
$$5(10) = 5(4+6)$$
 and $5(4+6) = 20+30$ then $5(10) = 20+30$

(ii)
$$5(3+2) = 5(3+2)$$

(iii)
$$24(2) = 2(24)$$

(4

(iv) $5 \times 1 = 5$ (4 marks)

(d) Find the quotient and the remainder when $2x^3+x^2-13x+6$ is divided by x-2 (4 marks)

(e) Solve the equation $3x^2+2x+1=0$ using the quadratic formula. (4 marks)

QUESTION THREE

COSC 0170

- (a) Find the expansion of $(a-2b)^{-5}$ using the coefficient from the Pascal's triangle. (5 marks)
- (b) Define a function f(t) by

$$f(t) = \begin{cases} 3t^2 + 4 & \text{if } t \le -4 \\ 5 & \text{if } -4 < t \le 5 \\ 1 - 6t & \text{if } t > 6 \end{cases}$$

Find (i) f(-6)

(iii) f(5)

- (iv) f(10) (5 marks)
- (c) The length of a rectangle is one meter greater than the width. If the area of the rectangle is $72 m^2$, find the length and the width. (5 marks)
- (d) Plot the graph of the quadratic equation $y=x^2$, hence approximate the solutions to the equation from the graph. (5 marks)

QUESTION FOUR

- (a) Find the radius and centre of the circle that passes through the points (7, 1), (0, 0), (-1, 7) (10 marks)
- (b) Find the derivatives of the following functions using the rule indicated
 - (i) $x^3 x^2 + x 1$ (2 marks)
 - (ii) $(x^2-2)(x+1)$ (2 marks)

(iii)
$$\frac{x}{x^2 - x + 1}$$
 (3)

marks)

(iv)
$$x^4 - 3x^2 + 4\dot{\iota}^4$$
 (3 marks)

QUESTION FIVE

COSC 0170

(e)	Given $\partial = 4 - 6i$, find $ \partial $	(3 marks)
(d)	From a group of 7 men and 6 women, 4 men and 3 women are to be select committee. In now many ways can this be done?	ted to form a (3 marks)
(c)	By the help of a truth table, show that $(pvq) = p \Lambda q$	(5 marks)
(b)	Prove analytically that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(5 marks)
(a)	Peter has five friends. In how many ways can he invite at least 3 of his frie birthday party?	ends to his (4 marks)