CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 842: MEASURE AND PROBABILITY THEORY

STREAMS: Msc APPLIED STATISTICS PART TIME

TIME: 3 HOURS

2.30 PM - 5.30 PM

DAY/DATE : WEDNESDAY 6 /10/ 2021

INSTRUCTIONS:

• Answer Any THREE Questions

QUESTION ONE (20MARKS)

(a) State and explain the eight set operations given that *CCP* (Ω) is a collection of subjects Ω

[8 Marks]

[2 Marks]

[2 Marks]

- (b) State the four definitions related to weak convergence of probability measures given that *i*) is a probability distribution function and *F* is also a probability distribution which is not necessarily proper. [8 Marks]
- (c) Define the following terms as described under random elements of metric spaces.
- (i) Random variable
- (ii) Random vector

QUESTION TWO (20 MARKS)

- a) Let =R and that P is a probability measure on R. Show $F(x)=P(\in \infty, x \wr), x \in R$ is $\Omega = R$
- (i) Right continuous
- (ii) Monotone Increasing
- (iii) Has limits at $\pm \infty$

[10 Marks]

 $n \longrightarrow \infty$ $n \longrightarrow \infty$

(b) The Faton lemma states that if $x_n \ge 0$ then $E(\lim Inf x_n) \le \lim Inf E(x_n)$.

If there exists $Z \in L_1$ and $x_n \ge Z$, then prove that $E\left(\lim_{n \to \infty} x_n\right) \le \lim_{n \to \infty} info E(x_n)$

[10 Marks]

QUESTION THREE (20 MARKS)

a) If $[x_n \dot{c}]$ are independent random variables with tail σ -field T, then $A \in T$ implies P(A)=0or 1 so that the tail σ -field T is almost trivial (Hint; kolmogoro zero-one law)

[15 Marks]

b) Given that $A = \{9, 8, 10, 11, 12\}$ and $B = \{6, 7, 9, 11, 12, 14, 18\}$

Find the following indicator functions

- (i) $I_A 11$
- (ii) $I_B 10$
- (iii) *I*_{AB}12
- (iv) $I_{A \cup B} 8$
- (v) I_{B^c} 9 [5 Marks]

QUESTION FOUR (20 MARKS)

State the properties of the expectation operator E

QUESTION 5 (20 MARKS)

- (a) Suppose that $\{x_n, \eta \ge 1, x\}$ are random variables on a probability space $(\Omega \beta \rho)$ if $x_n \to x a.s$ then prove $x_n \xrightarrow{P} x$. [5 Marks]
- (b) Let $\{x_n, n, \ge 1\}$ be iid random variables with $E(x_n) = \mu$ and $i Var(x_n i = \sigma^2)$. Suppose N is a random variable with N(0,1) distribution if $S_n = x_1 + x_2 + ... + x_n$ Then

[20 Marks]

prove that
$$\frac{S_n - n\mu}{\frac{\sigma}{\sqrt{n}}} \Rightarrow N$$
 [15
Marks]

.

.....

Page **3** of **3**