CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 842: MEASURE AND PROBABILITY THEORY

STREAMS: Msc APPLIED STATISTICS PART TIME

TIME: 3 HOURS
DAY/DATE : WEDNESDAY $6 / 10 / 2021$
2.30 PM - 5.30 PM

INSTRUCTIONS:

- Answer Any THREE Questions

QUESTION ONE (20MARKS)
(a) State and explain the eight set operations given that $C C P(\Omega)$ is a collection of subjects Ω
[8 Marks]
(b) State the four definitions related to weak convergence of probability measures given that i) is a probability distribution function and F is also a probability distribution which is not necessarily proper.
(c) Define the following terms as described under random elements of metric spaces.
(i) Random variable
(ii) Random vector
[2 Marks]
QUESTION TWO (20 MARKS)
a) Let $=R$ and that P is a probability measure on R. Show $F(x)=P(\in \infty, x i), x \in R$ is. $\Omega=R$
(i) Right continuous
(ii) Monotone Increasing
(iii) Has limits at $\pm \infty$
(b) The Faton lemma states that if $x_{n} \geq 0$ then $E\left(\lim \operatorname{Inf} x_{n}\right) \leq \lim \operatorname{Inf} E\left(x_{n}\right)$.

$$
n \longrightarrow \infty \quad n \longrightarrow \infty
$$

If there exists $Z \in L_{1}$ and $x_{n} \geq Z$, then prove that $E\left(\lim _{n \rightarrow \infty} x_{n}\right) \leq \lim _{n \rightarrow \infty} \operatorname{info} E\left(x_{n}\right)$
[10 Marks]

QUESTION THREE (20 MARKS)

a) If $\left[x_{n}\right.$ \&are independent random variables with tail σ-field T , then $\mathrm{A} \in \mathrm{T}$ implies $P(A)=0$ or 1 so that the tail σ - field T is almost trivial (Hint; kolmogoro zero-one law)
[15 Marks]
b) Given that $\mathrm{A}=\{9,8,10,11,12\}$ and $\mathrm{B}=\{6,7,9,11,12,14,18\}$

Find the following indicator functions
(i) $I_{A} 11$
(ii) $\quad I_{B} 10$
(iii) $I_{A B} 12$
(iv) $I_{A \cup B} 8$
(v) $\quad I_{B^{c}} 9$

QUESTION FOUR (20 MARKS)
State the properties of the expectation operator E

QUESTION 5 (20 MARKS)

(a) Suppose that $\left\{x_{n}, \eta \geq 1, x\right\}$ are random variables on a probability space $(\Omega \beta \rho)$ if $x_{n} \rightarrow x a . s$ then prove $x_{n} \xrightarrow{P}{ }_{x}$.
(b) Let $\left\{x_{n}, n, \geq 1\right\}$ be iid random variables with $E\left(x_{n}\right)=\mu$ and $i \operatorname{Var}\left(x_{n} i=\sigma^{2}\right.$. Suppose N is a random variable with $N(0,1)$ distribution if $S_{n}=x_{1}+x_{2}+\ldots+x_{n}$ Then

$$
\text { prove that } \frac{S_{n}-n \mu}{\frac{\sigma}{\sqrt{n}}} \Rightarrow N
$$

Marks]

