

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE

MATH 829: METHODS OF FLUID MECHANICS II

STREAMS: MSC
TIME: 3 HOURS

DAY/DATE: TUESDAY 06/04/2021
8.30 A.M. - 11.30 A.M.

INSTRUCTIONS: Answer any THREE questions

QUESTION ONE (20 MARKS)

(a) (i) State the basic idea in using the finite difference techniques [2 marks]
(ii) Outline the three steps followed in in solving a problem using a finite difference method.
(iii) Using mesh schematic diagrams explain the differences between explicit and implicit methods of solving pde
(b) Solve the boundary value problem using the difference Scheni
$\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}+\frac{y_{i+1}-y_{i-1}}{2 n}+x_{i}=0$
$y^{\prime \prime}+y^{\prime}+x=0$ with boundary condition $y(o)=0, y(1)=0 \quad$ [9 marks]

QUESTION TWO (20 MARKS)
(a) Consider the one dimension equation
$\frac{d^{2} u}{d t^{2}}=c^{2} \frac{d^{2} u}{d x^{2}}, t>0,0<x<1$

Using central difference approximation at a mesh point $(i h, j k)$ set up the difference formulation using
(i) Implicit method I
(ii) Implicit method II
(b) Consider the wave equation
$\frac{d^{2} u}{d t^{2}}=c^{2} \frac{d^{2} u}{d x^{2}}$ with
$u(o, t)=0, u(1, t)=0, t>0$ and
$u(x, o)=4 x^{2},\left(\frac{d u}{d t}\right)=00 \leq x$
Using central differences and the explicit formula find the value of u for $x=0,0.2,0.4 \wedge t=0,0.1 \ldots 0.5$ when $\mathrm{c}=1$

QUESTION THREE (20 MARKS)

(a) (i) Explain the meaning of a well posed mathematical problem [3 marks]
(ii) Using examples state and differentiate between the 3 types of boundary
conditions used in solving partial differential equations
(b) Solve by the Crank-Nickolson method
$U_{x x}=U_{t} \quad$ Subject to
$U(x, o)=0, u(o, t)=0$
$U(1, t)=t$ for 2 time steps, taking $h=1 / 4$
[11 marks]

QUESTION FOUR (20 MARKS)

(a) (i) Write an explicit finite difference scheme for the

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}} \text { for } 0<x<1, t>0
$$

Given that
$u(o, t)=\frac{d u}{d t}(1, t)=0, u(x, 0)=f(x)$ and $\left.\left(\frac{d u}{d t}\right)_{x 10}=g(x) 0<x<1\right\} \quad \quad[3 \mathrm{marks}]$
(iii) Write an implicit finite difference scheme for the problem

$$
U_{t}=U_{x x} \text { for } 0<x<1, t>0
$$

Given that

MATH 829

$$
\left.U(o, t)=U_{x}(1, t)=0, U(x, o)=f(x) \text { and }\left(\frac{d u}{d t}\right)_{x, o}=g(x), 0<x<1\right)
$$

(b) Discuss the classification of the general linear partial differential equation of the form. [6 marks]

$$
A U_{x x}+B U_{x y}+C U_{y y}+D U_{x}+E U_{y}+F U=0
$$

(c) Solve the system of linear equations using Jacobi method with $x^{\circ}=(1,1,1)^{T}$ and three iterations
$5 x_{1}+x_{2}-x_{3}=4$
$x_{1}+4 x_{2}-2=15$
$x_{1}-2 x_{2}+5 x_{3}=12$
[8 marks]

