MATH 826

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATIONS FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 826: NUMERICAL ANAYSIS II

STREAMS:

TIME: 3 HOURS

8.30 AM - 11.30 AM

DAY/DATE : THURSDAY 7 /10/ 2021

INSTRUCTIONS:

• Answer any THREE questions

QUESTION ONE (20MARKS)

- **a.** Using Taylors Series method with the first three derivatives, solve the Initial Value Problem at x = 0.50 with h = 0.25
 - $y^{1} = 1-y$ given that y(0) = 0 (8marks)

b. Taking h=0.4, use the 4th order Runge Kutta method to solve $\frac{dy}{dt} = t+y$, y(0) = 1, from t=0 to t=1 (12marks)

QUESTION TWO (20MARKS)

a. Evaluate $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sqrt{\sin(x+y)} \, dx \, dy$ using the numerical double integration method based (10marks)

b. Use Taylors series to find the series solution of the system subject to the initial condition x = 1 and y = -1 (10marks)

$$\frac{dx}{dt} = x y + 2t$$
$$\frac{dy}{dt} = 2ty + x$$

QUESTION THREE (20MARKS)

- **a.** Using Picard's method solve $\frac{dy}{dt} = t + y$, y |0| = 1 at x = 0.2 up to 3 approximations given that
- b. i. Outline the Runge Kutta methods of order 2,3and 4 (9Marks) (9Marks)

ii. Explain the advantages of the Runge Kutta method of 4th order over the other methods

(3Marks)

QUESTION FOUR (20MARKS)

- a. Use Euler's method to solve the IVP y' = x + y; y(0) = 1, taking h = 0.1 (10Marks)
- b. Solve the IVP using the Adam's Moulton method at x = 1.0 taking h = 0.2 and compare

$$\frac{dy}{dt} = y - t^2 : y(0) = 1$$

with the analytic solution dt (10Marks)

QUESTION FIVE (20MARKS)

a. Use RK - 4th order method to solve for y at x=1.2 and x=1.4

$$\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$$

(10Marks)
Solve numerically using Milne's Predictor -Corrector method taking $h = 0.05$
 $y' = x + y$ with $0.20 \le x \le 0.30; x_0 = 0, y_0 = 1$ given that
 $y'_1 = 1.1026, y'_2 = 1.2104$ and $y'_3 = 1.3237$ (10Marks)

b.

.....