

UNIVERSITY

UNIVERSITY EXAMINATIONS
EXAMINATIONS FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 826: NUMERICAL ANAYSIS II
 STREAMS:

TIME: 3 HOURS
DAY/DATE : THURSDAY 7 /10/ 2021
8.30 AM - 11.30 AM

INSTRUCTIONS:

- Answer any THREE questions

QUESTION ONE (20MARKS)

a. Using Taylors Series method with the first three derivatives, solve the Initial Value Problem at $x=0.50$ with $h=0.25$

$$
y^{1}=1-y \text { given that } y(0)=0
$$

b. Taking $h=0.4$, use the $4^{\text {th }}$ order Runge Kutta method to solve $\frac{d y}{d t}=t+y, y(0)=1$,from $t=0$ to $t=1$
(12marks)

QUESTION TWO (20MARKS)

b. Use Taylors series to find the series solution of the system subject to the initial condition $x=1$ and $y=-1$

$$
\begin{aligned}
& \frac{d x}{d t}=x y+2 t \\
& \frac{d y}{d t}=2 t y+x
\end{aligned}
$$

QUESTION THREE (20MARKS)

a. Using Picard's method solve $\frac{d y}{d t}=t+y$, at $x=0.2$ up to 3 approximations given that $y(0)=1$
b. i. Outline the Runge Kutta methods of order 2,3and 4
(9Marks)
ii. Explain the advantages of the Runge Kutta method of $4^{\text {th }}$ order over the other methods (3Marks)

QUESTION FOUR (20MARKS)

a. Use Euler's method to solve the IVP $\quad y^{\prime}=x+y ; y(0)=1$, taking $h=0.1 \quad$ (10Marks)
b. Solve the IVP using the Adam's Moulton method at $x=1.0$ taking $h=0.2$ and compare with the analytic solution $\frac{d y}{d t}=y-t^{2}: y(0)=1$
(10Marks)

QUESTION FIVE (20MARKS)

a. Use RK $-4^{\text {th }}$ order method to solve for y at $x=1.2$ and $x=1.4$

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{2 x y+e^{x}}{x^{2}+x e^{x}} \\
& \text { (10Marks) }
\end{aligned} \text { given that } \quad x_{0}=1 \text { and } y_{0}=0
$$

b. Solve numerically using Milne's Predictor -Corrector method taking $h=0.05$

$$
\begin{aligned}
& y^{\prime}=x+y \quad \text { with } 0.20 \leq x \leq 0.30 ; x_{0}=0, y_{0}=1 \text { given that } \\
& y_{1}^{\prime}=1.1026, y_{2}^{\prime}=1.2104 \text { and } y_{3}^{\prime}=1.3237
\end{aligned}
$$

