MATH 812

CHUKA

UNIVERSITY

TIME: 3 HOURS

2.30 P.M – 5.30 P.M.

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (PURE MATHEMATICS)

MATH 812: FIELD THEORY

STREAMS: MSC (MATH)

DAY/DATE: TUESDAY 06/04/2021

INSTRUCTIONS:

- Answer ANY three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (20 MARKS)

- a) i. Define a ring homomorphism (2 marks) ii. Show that $\phi: C \to M_2(R)$ given by $\phi(a+bi) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ for all $a, b \in R$ is a ring homorphism. (3 marks)
- b) Let P and Q be primary ideals in a commutative ring R, then show that the product

PQ of P and Qdefined by $PQ = \sum_{i=1}^{n} p_i q_i \lor p_i \in P, q_i \in Q$ is an ideal of commutative ring R. (4 marks)

c) Define the ring of fractions of ring *R* and suppose $R=Z_6 \land S=\{1,5\}$, find the ring of fractions $S^{-I}R$. (5 marks)

d) i. Define a primary ideal. (2 marks)
ii. Show that if Q₁, Q₂,...,Q_n are primary ideals in a commutative ring R, all of which are primary for the prime ideal P, then ∩ⁿ_{i=1}Q_i is also a primary ideal belonging to P.

QUESTION TWO (20 MARKS)

- a) i. Define the terms maximal and prime ideal. (2 marks)
 ii. Find all the prime ideals and maximal ideals of Z₁₂. (4 marks)
- b) Prove that if R is a commutative ring with unity, then I is a maximal ideal of R if and

only if
$$\frac{R}{I}$$
 is a field. (6 marks)

c) Prove that if F is a field, then F[x] is a principal ideal domain. (4 marks)

d) Show that the field $F = Q\dot{i}$ is a simple extension given by $F' = Q\dot{i}$

QUESTION THREE (20 MARKS)

a) State the Einstein irreducibility criterion and hence show that $17x^3+5x^2+15x-5$ is irreducible over Q (4 marks)

b) By solving for the irreducible monic polynomial f(x) ∈ Q(x) such that ∝ is a root of f(x), find the degree of ∝ = √√7+3 over Q. (3 marks)

c) Find all the conjugates of $\sqrt{1+\sqrt{2}}$ over Q. (5 marks)

d) By considering an irreducible polynomial f(x) over Z_2 of degree 3 construct GF(8).

(5 marks)

(4 marks)

(4 marks)

e) Define a simple extension K of a subfield Fif E is a field extension of F and $\alpha \in E$ and hence give an example of a simple field extension of the field or real numbers.

(3

marks)

QUESTION FOUR (20 MARKS)

a) Find the splitting field of $x^4 - 5x^2 + 6$.

MATH 812

- b) Prove that if the element r is algebraic over the field F with minimum polynomial $f(x) \in F[x]$ then o \dot{c} . (6 marks)
- c) Show that a field F is algebraically closed if and only if every non-zero polynomial in f(x) factors into linear factors. (6 marks)
- d) Show that if *I* is an ideal and if *I* has a primary decomposition then *I* has a reduced or normal primary decomposition. (4 marks)
