CHUKA

SECOND YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (PURE MATHEMATICS)

MATH 812: FIELD THEORY

STREAMS: MSC (MATH)
TIME: 3 HOURS
DAY/DATE: TUESDAY 06/04/2021
2.30 P.M - 5.30 P.M.

INSTRUCTIONS:

- Answer ANY three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (20 MARKS)

a) i. Define a ring homomorphism
ii. Show that $\phi: C \rightarrow M_{2}(R)$ given by $\phi(a+b i)=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ for all $a, b \in R$ is a ring homorphism.
b) Let P and Q be primary ideals in a commutative ring R, then show that the product
$P Q$ of P and Q defined by $P Q=\sum_{i=1}^{n} p_{i} q_{i} \vee p_{i} \in P, q_{i} \in Q$ is an ideal of commutative ring R. marks)
c) Define the ring of fractions of ring R and suppose $R=Z_{6} \wedge S=\{1,5\}$, find the ring of fractions $S^{-I} R$.

MATH 812

d) i. Define a primary ideal.
ii. Show that if $Q_{1}, Q_{2}, \ldots, Q_{n}$ are primary ideals in a commutative ring R, all of which are primary for the prime ideal P, then $\cap_{i=1}^{n} Q_{i}$ is also a primary ideal belonging to P.

QUESTION TWO (20 MARKS)

a) i. Define the terms maximal and prime ideal.
ii. Find all the prime ideals and maximal ideals of Z_{12}.
b) Prove that if R is a commutative ring with unity, then I is a maximal ideal of R if and only if $\frac{R}{I}$ is a field.
c) Prove that if F is a field, then $F[x]$ is a principal ideal domain. marks)
d) Show that the field $F=Q i$ is a simple extension given by $F^{\prime}=Q i$ (4 marks)

QUESTION THREE (20 MARKS)

a) State the Einstein irreducibility criterion and hence show that $17 x^{3}+5 x^{2}+15 x-5$ is irreducible over Q
(4 marks)
b) By solving for the irreducible monic polynomial $f(x) \in Q(x)$ such that α is a root of $f(x)$, find the degree of $\alpha=\sqrt{\sqrt{7}+3}$ over Q. marks)
c) Find all the conjugates of $\sqrt{1+\sqrt{2}}$ over Q.
d) By considering an irreducible polynomial $f(x)$ over Z_{2} of degree 3 construct $G F(8)$.
e) Define a simple extension K of a subfield F if E is a field extension of F and $\alpha \in E$ and hence give an example of a simple field extension of the field or real numbers. marks)

QUESTION FOUR (20 MARKS)

a) Find the splitting field of $x^{4}-5 x^{2}+6$.

MATH 812

b) Prove that if the element r is algebraic over the field F with minimum polynomial $f(x) \in F[x]$ then $o \dot{i}$. (6 marks)
c) Show that a field F is algebraically closed if and only if every non-zero polynomial in $f(x)$ factors into linear factors.
d) Show that if I is an ideal and if I has a primary decomposition then I has a reduced or normal primary decomposition.

