MATH 822

CHUKA

UNIVERSITY EXAMINATIONS

UNIVERSITY

TIME: 3 HOURS

(8 marks)

(6 marks)

2.30 P.M. - 5.30 P.M.

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 822: ORDINARY DIFFERENTIAL EQUATIONS II

STREAMS: MSC (MATH)

DAY/DATE: TUESDAY 06/04/2021 **INSTRUCTIONS: Answer any THREE Questions**

QUESTION ONE (20MARKS)

a.	Explain the meaning of the following Mathematical terms	

- (i) **Eigen Function**
- (ii) Eigenvalue problem
- (iii) Sturm Liouville Problem
- (iv) Boundary Value Problem

b. For the Boundary Value Problem
$$\frac{d^2 y}{dx^2} + \lambda y = 0; \ y(0) = y(c) = 0$$
, find
i. Eigenvalues (6 marks)

ii. **Eigen functions**

Eigenvalues

i.

QUESTION TWO (20MARKS)

- a. State the following i. The condition for a Linear differential equation to be exact (2 marks)
 - The condition for a nonlinear differential equation to be exact ii. (2 marks)

MATH 822

b. By reducing the order, solve the nonlinear differential equation (1)

$$x^{2}y^{'''} + (2x + xy)y^{''} + x(y^{'})^{2} + 3yy^{'} = 0$$

QUESTION THREE (20MARKS)

- a. i. Show that the functions $f_1(x) = -6x+2$, $f_2(x) = 6x^2-6x+1$, $f_1(x) = (x-1)$ are mutually orthogonal (6 marks)
 - ii. Find the orthonormal set for the functions in 2 a (i) (4 marks)
- b. Write the Eigenvalue Problems as Sturm Liouville Problems

$$x^{2}y'' + xy' + \lambda y = 0$$
; $y(1)=0, y(2)=0$
 $y'' + 3y' + (\lambda + 2)y = 0$; $y(1)=0, y(1)=2$

c. Given that the general solution of the Bessel's ordinary differential equation is

$$J_{n}(x) = \sum_{m=n}^{\infty} \frac{(-1)^{m}}{m!(m-n)!} \left(\frac{x}{2}\right)^{2m-n}$$

Show that $\frac{d}{dx} \left[x^{\nu} J_{\nu}(x) \right] = x^{\nu} J_{\nu-1}(x)$

QUESTION FOUR (20MARKS)

a. Solve the Boundary Value Problem for $\lambda = >0$

$$\frac{d^2 y}{dx^2} + 4 \frac{dy}{dx} + 4 y + 9 \lambda y = 0$$

y(0) = 0, y(1) = 0 (6

marks)

b. Show that the differential equation is exact and hence solve it (9 marks)

$$\frac{d^{3}y}{dx^{3}} + \left(x + 1 + \frac{3}{x}\right)\frac{d^{2}y}{dx^{2}} + 2\left(2 + \frac{1}{x}\right)\frac{dy}{dx} + \frac{2}{x^{2}}y = 0$$

c. Consider the set of functions $[1, \cos x, \cos 2x \cdots]$ on the interval $[-\pi, \pi]$. Given that the norm of 1 is and the norm of $\cos nx$ is $\sqrt[n]{\pi}$. Find the orthonormal set of $[1, \cos x, \cos 2x \cdots]$. (5 marks)

(16 marks)

(4 marks)

(6 marks)
