

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF

DIPLOMA IN COMPUTER SCIENCE

COSC 0211: DIGITAL ELECTRONICS

STREAMS: DIP COMP SCI Y2S1

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 22 /09/ 2021

2.30 PM – 4.30 PM

SECTION A: COMPULSORY

QUESTION ONE (30 MARKS) COMPULSORY

a) Below is a circuit diagram use it to answer the question below

i. Deduce the output Q in SOP form

(4 marks)

b) Discuss the working of a 4:1 MUX

(4 marks)

- c) With the aid of a diagram, discuss **TWO** clock triggering mechanisms as used in sequential circuits (4 marks)
- d) State **FOUR** differences between computer RAM and ROM

(4 marks)

e) Discuss **TWO** Boolean laws that can use to minimize a Boolean expression

(4 marks)

f) Deduce the truth table of the following expression

$$X = \overline{A}\,\overline{B} + A\overline{B}C + B\overline{C}$$

(3 marks)

g) Use K-map to minimize the logic expression below

(4 marks)

 $F(A,B,C) = \sum m(0,2,4,5,6,7)$

h) State THREE differences between combinational and sequential circuits

(3 marks)

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION QUESTION TWO (20 MARKS)

a) Using a circuit diagram and a truth table, explain the operation of a NOR S-R Latch

(8

marks)

b) Prove that B'+BC = B'+C using

i. Boolean Algebra laws

(4 marks)

ii. Truth table (4 marks)

c) Explain the **TWO** types of sequential circuits

(4 marks)

/QUESTION THREE (20 MARKS)

a) Using a diagram, explain the memory hierarchy of a digital computer

(6 marks)

b) Realize the circuit below using NOR gates only

(6 marks)

- c) Explain why it is important to minimize Boolean expressions in digital logic (2 marks)
- d) Use Boolean laws and rules to minimize the logic expression below, then deduce the truth table of the minimized expression (6 marks)

$$\overline{(\overline{AB} + \overline{AB})}(A + B)$$

QUESTION FOUR (20 MARKS)

- a) With the help of a circuit diagram and a truth table, explain the working of an 8 to 3 encoder (8 marks)
- b) Below is a truth table of a combination circuit with 3-inputs A, B, C and two outputs X and Y, use it to answer the following questions.

COSC 0211

Inputs			outputs	
A	В	С	X	Y
0	0	0	1	1
0	0	1	0	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1

i.	Deduce the Boolean expression of output X in POS form	3 marks
ii.	Deduce the Boolean expression of output Y in SOP form	2 marks
iii.	Use K-map to minimize the POS equation in (i) above	5 marks

QUESTION FIVE (20 MARKS)

a) With the aid of a circuit diagram and a truth table, explain how a half adder works

(6

marks)

- b) Realize a half adder using NAND gates only (6 marks)
- c) Differentiate between a flip flop and a latch (2 marks)
- d) Discuss **THREE** types of Read Only Memory (6 marks)

.....