

UNIVERSITY

UNIVERSITY EXAMINATIONS
FIRST YEAR EXAMINATION FOR THE AWARD OF
DIPLOMA IN COMPUTER SCIENCE
COSC 0211: DIGITAL ELECTRONICS

STREAMS: DIP COMP SCI Y2S1
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 22 /09/ 2021
2.30 PM - 4.30 PM

SECTION A: COMPULSORY

QUESTION ONE (30 MARKS) COMPULSORY
a) Below is a circuit diagram use it to answer the question below

i. Deduce the output Q in SOP form
b) Discuss the working of a 4:1 MUX
c) With the aid of a diagram, discuss TWO clock triggering mechanisms as used in sequential circuits
d) State FOUR differences between computer RAM and ROM
e) Discuss TWO Boolean laws that can use to minimize a Boolean expression (4 marks)
f) Deduce the truth table of the following expression

$$
X=\bar{A} \bar{B}+A \bar{B} C+B \bar{C}
$$

g) Use K-map to minimize the logic expression below $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,2,4,5,6,7)$
h) State THREE differences between combinational and sequential circuits

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION QUESTION TWO (20 MARKS)

a) Using a circuit diagram and a truth table, explain the operation of a NOR S-R Latch marks)
b) Prove that $\mathrm{B}^{\prime}+\mathrm{BC}=\mathrm{B}^{\prime}+\mathrm{C}$ using
i. Boolean Algebra laws
ii. Truth table
c) Explain the TWO types of sequential circuits

/QUESTION THREE (20 MARKS)

a) Using a diagram, explain the memory hierarchy of a digital computer (6 marks)
b) Realize the circuit below using NOR gates only
(6 marks)

c) Explain why it is important to minimize Boolean expressions in digital logic (2 marks)
d) Use Boolean laws and rules to minimize the logic expression below, then deduce the truth table of the minimized expression

$$
\begin{equation*}
\overline{(A \bar{B}+\overline{A B})}(A+B) \tag{6marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a) With the help of a circuit diagram and a truth table, explain the working of an 8 to 3 encoder marks)
b) Below is a truth table of a combination circuit with 3-inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and two outputs X and Y , use it to answer the following questions.

Inputs			outputs	
A	B	C	X	Y
0	0	0	1	1
0	0	1	0	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1

i. Deduce the Boolean expression of output X in POS form

3 marks
ii. Deduce the Boolean expression of output Y in SOP form 2 marks
iii. Use K-map to minimize the POS equation in (i) above

QUESTION FIVE (20 MARKS)

a) With the aid of a circuit diagram and a truth table, explain how a half adder works
marks)
b) Realize a half adder using NAND gates only
c) Differentiate between a flip flop and a latch
d) Discuss THREE types of Read Only Memory

