UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF
 DIPLOMA IN COMPUTER SCIENCE
 COSC 0211: DIGITAL ELECTRONICS

STREAMS: DIP COMP SCI Y1S1
TIME: 2 HOURS

CAMPUSES: MAIN CAMPUS \& EMBU CAMPUS

DAY/DATE:..............................

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be NO use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely.
- Marks are awarded for clear and concise answers.

SECTION A (Answer ALL questions in this section)

QUESTION ONE (30 marks)

a) By the aid of a diagram differentiate between a digital and analog signal [4marks]
b) Draw a logic circuit and truth table for $\mathrm{A}+\mathrm{BC}+\mathrm{C}$ '. [4marks]
c) Explain the De-Morgan Boolean law [2marks]
d) Derive the truth table for a two input NOR gate
[2marks]
e) Sketch the standard symbols of the following basic logic gates and derive their truth tables.
i. OR gate [2marks]
ii. AND gate [2marks]
f) Consider a three input NAND gate, the inputs are A, B, and C. Derive the truth table and draw the symbol for the expression.
[4marks]
g) Explain why NOR and NAND gate are referred to as universal gate
[2marks]
h) Differentiate between RAM and ROM as used in memory
[4marks]
i) Minimize $\mathrm{Y}=(\mathrm{A}+\mathrm{C}) .\left(\mathrm{AD}+\mathrm{AD}^{\prime}\right)+\mathrm{AC}+\mathrm{C}$ by use of Boolean laws
[4marks]

SECTION B (Answer any TWO questions)

QUESTION TWO (20 marks)

a) State two differences between combinational circuits and sequential circuits. [4marks]
b) Differentiate between a flip-flop and a latch
c) By use of Boolean laws and rules minimize the following Boolean expressions (show your working)
i. $\quad \mathrm{Y}=\mathrm{A}^{\prime}(\mathrm{A}+\mathrm{B})+(\mathrm{B}+\mathrm{AA})\left(\mathrm{A}+\mathrm{B}^{\prime}\right)$
[4marks]
ii. $\quad \mathrm{Y}=\mathrm{A}^{\prime}+\mathrm{AB}$
[4marks]
d) Use NAND gate only to realize the following basic gates
i. OR gate
[3marks]
ii. AND gate

QUESTION THREE (20 marks)

a) Differentiate between SOP and POS
b) Consider the function below

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\varepsilon_{\mathrm{m}}(2,4,5,6,7)
$$

i. Classify the above equation to either SOP or POS form and state why it belongs to that specific form
ii. Construct the truth table for the equation
iii. Draw the K-map of the equation
iv. Minimize the equation using K-map
[4marks]
c) Use only NOR gates to realize AND gate (show your working)
[4marks]
QUESTION FOUR (20 marks)
a) Use the circuit below to answer the following questions

Derive the equation at:
Y
[2marks]
Y_{1}
Y_{2}
Y_{3}
b) Discuss half adder illustrating its working, diagram and truth table
[2marks]
[2marks]
c) Discuss two types of ROM memory

QUESTION FIVE (20 marks)

a) Differentiate between SRAM and DRAM
b) Proof $\mathrm{A}+\mathrm{A}^{\prime} \mathrm{B}==\mathrm{A}+\mathrm{B}$ by use of
i. Boolean laws and rules [6marks]
ii. Truth tables
c) Discuss the Boolean rules under the AND law
[4marks]
d) Discuss two clock triggering mechanisms
[2marks]

