UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF

DIPLOMA IN COMPUTER SCIENCE

COSC 0211: DIGITAL ELECTRONICS

STREAMS: DIP COMP SCI Y1S1 HOURS

DAY/DATE:....

•••••

TIME:

2

INSTRUCTIONS:

- Answer question **ONE** and **TWO** other questions
- Do not write anything on the question paper

CAMPUSES: MAIN CAMPUS & EMBU CAMPUS

- This is a closed book exam, No reference materials are allowed in the examination room
- There will be **NO** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely.
- Marks are awarded for clear and concise answers.

SECTION A (Answer ALL questions in this section)

QUESTION ONE (30 marks)

a)	By the aid of a diagram differentiate between a digital and analog signal	[4marks]		
b)	Draw a logic circuit and truth table for $A + BC + C'$.			
c)	Explain the De-Morgan Boolean law			
d)	Derive the truth table for a two input NOR gate [
e)	Sketch the standard symbols of the following basic logic gates and derive their truth tables.			
	i. OR gate	[2marks]		
	ii. AND gate	[2marks]		
f)	onsider a three input NAND gate, the inputs are A, B, and C. Derive the truth table and			
	draw the symbol for the expression.	[4marks]		
g)	Explain why NOR and NAND gate are referred to as universal gate	[2marks]		
h)	Differentiate between RAM and ROM as used in memory	[4marks]		
i)	Minimize Y=(A+C).(AD+AD')+AC+C by use of Boolean laws	[4marks]		

SECTION B (Answer any TWO questions)

QUESTION TWO (20 marks)

- a) State two differences between combinational circuits and sequential circuits. [4marks]
- b) Differentiate between a flip-flop and a latch [2marks]
- c) By use of Boolean laws and rules minimize the following Boolean expressions (show your working)

1	i. ii.	Y=A'(A+B) + (B+AA)(A+B') Y=A'+AB	[4marks] [4marks]			
d)	Use N i. ii.	AND gate only to realize the following basic gates OR gate AND gate	[3marks] [3marks]			
QUESTION THREE (20 marks)						
a) b)	Differ Consid	entiate between SOP and POS ler the function below	[4marks]			
$F(A,B,C) = \varepsilon_m(2,4,5,6,7)$						
	i.	Classify the above equation to either SOP or POS form and state why that specific form	it belongs to [2marks]			
	ii.	Construct the truth table for the equation	[4marks]			
	iii.	Draw the K-map of the equation	[2marks]			
	iv.	Minimize the equation using K-map	[4marks]			

c) Use only NOR gates to realize AND gate (show your working) [4marks]

QUESTION FOUR (20 marks)

a) Use the circuit below to answer the following questions

Derive the equation at:

	Y	[2marks]
	Y ₁	[2marks]
	Y ₂	[2marks]
	Y ₃	[2marks]
b)	Discuss half adder illustrating its working, diagram and truth table	[8marks]
c)	Discuss two types of ROM memory	[4marks]

QUESTION FIVE (20 marks)

- a) Differentiate between SRAM and DRAM
- b) Proof A+A'B == A+B by use of

[4marks]

	i.	Boolean laws and rules	[6marks]
	ii.	Truth tables	[4marks]
c) Discuss the Boolean rules under the AND law			[4marks]
d)	Discu	ss two clock triggering mechanisms	[2marks]