CHUKA

UNIVERSITY

[4

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF COMPUTER SCIENCE

COSC 222: COMPUTER OPERATING SYSTEM

STREAMS: BSC (COMP SCIE) TIME: 2 HOURS

DAY/DATE: WEDNESDAY 03/02/2021 2.30 PM – 4.30 PM

INSTRUCTIONS:

- 1. Answer question **ONE** and any other **TWO** questions
- 2. Marks are awarded for clear and concise answers

SECTION A

QUESTION ONE COMPULSORY - (30 MARKS)

- (a) Using relevant example(s) define the term operating. [2marks]
- (b) Briefly explain four functions in file, process and memory management performed by windows 7 operating system. [8 marks]
- (c) Distinguish between multi-user and multiprocessing operating systems. [2 marks]
- (d) Give two reasons why an operating system should require memory management. [2 marks]
- (e) Highlight any two levels of directory organization. [2 marks]
- (f) Give three reasons why an operating system should require memory management. [3 marks]
- (g) Context switching in Operating system is the switching of the CPU from one process to another.
 - i) What are the three scenarios where context switches need to occur. [3 marks]
 - ii) Describe the steps for a context switch. [4 marks]
- (h) Differentiate between pre-emptive and non-preemptive scheduling, as used in CPU scheduling.

marks]

SECTION B (40 MARKS) CHOOSE TWO QUESTIONS

QUESTION TWO (20 MARKS)

- (a) Explain the following terms as they are used in the scheduling criterion:
 - i) CPU utilization.
 - ii) Turnaround time.
 - iii) Waiting time.
 - iv) Response time.

[8 marks]

(b) Explain four services provided by an operating system.

[8 marks]

(c) Explain two major complications that concurrent processing adds to an operating system.

[4 marks]

QUESTION THREE (20 MARKS)

The table below shows jobs submitted for execution in a computer system with Time-sharing Capability

Process	Arrival Time	Burst Time
p_1	0	3
p_2	1	5
p_3	3	2
p_4	9	5
P5	12	5

The Arrival Time and CPU burst are in arbitrary units. Using the table

- a) Construct Gantt Chart for FCFS,SJF,SRTN and RR (Time slice-3) scheduling algorithms and work out the average waiting time [12 marks]
- b) Which of the algorithms provide optimal values for the Average Waiting Time?

[1 mark]

c) Is the answer to (b) consistent with your expectation? Explain

[3 marks]

d) Explain the requirements for mutual exclusion

[4 marks]

QUESTION FOUR (20 MARKS)

(a) Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), place the following processes; 212K, 417K, 112K, and 426K (in order) using:-

	i) first-fit ii) Best-fit iii) Worst-fit	[6 marks]	
	From a) above advice on the algorithm that uses the memory effectively.	[1 mark]	
	Explain the term thrashing and state its disadvantages	[3 marks]	
(b)	Explain three algorithms used by memory manager to allocate a new created in process.	d or swapped [6 marks]	
(c)	Explain the following terms;		
	i) Fetch policyii) Replacement policy	[4 marks]	
QUESTION FIVE (20 MARKS)			
a)	What is a deadlock? Discuss the main necessary conditions for a deadlock to occur		
		[5 marks]	
b)	Differentiate between multitasking and multiprogramming	[3 marks]	
c)	What is a scheduler? Explain types of schedulers citing exactly where each i applicable.	s best [4 marks]	
d)	State four benefits of threads	[3 marks]	
e)	Consider the following resource allocation graph where R1,R2,R3,R4 are res P1,P3 are processes:	ources and	

i)

[2 marks]

Will deadlock occur and Why? ii)

[3 marks]