CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF MASTER

OF SCIENC IN WILDLIFE AND ENTERPRISE MANAGEMENT \& HOSPITALITY
 MANAGEMENT

MHIM 841/MATH 800: STATISTICS IN HOSPITALITY AND TOURISM BIOMETRY

STREAMS: MSC (WIEM, MHIM)
TIME: 3 HOURS

DAY/DATE: TUESDAY 06/04/2021

2.30 P.M. - 5.30 P.M.

INSTRUCTIONS:

- Answer question ONE and any other TWO
- Do not write anything on the question paper

1. In the following questions
(a) Discuss importance of central limit theorem in statistics
(b) Differentiate a probability distribution from a frequency distribution [4 marks]
(c) You are presented with a data of the height of 150 trees from woodlot A and a
height of a similar number in woodlot B. you want to determine whether there is
a difference in mean height between the two woodlots
(i) Discuss factors you would consider before settling on the appropriate test statistic
[10 marks]
(ii) With explanation, identify the best test for the hypothesis [3 marks]
2. (a) The weight of fish harvested from three ponds under different management systems is recorded below

Pond 1	8	6	7	5	7	5	8		
Pond 2	2	3	5	4	3	6	5	3	2
Pond 3	2	1	3	4	2	3	5	1	

Using Kruskal-Wallis test, determine whether there are differences between the ponds
[12 marks]
(b) Discuss the requirements for performing Kruskal Wallis test
3. (a) The monthly amount of rain recorded over eight months for two different regions (A and B) as shown below

A (mm)	15	20	18	8	10	5	12	16
B (mm)	18	22	20	6	8	6	16	16

By use of a t -test determine whether there is a significant difference between the amount received in the two regions [12 marks]
(b) The fish captured in a lake were categorized by their weight as shown below

Weight (kg) (x)	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$
Number of fish (f)	25	40	45	35	10

Calculate

(i) The specific media weight [4 marks]
(ii) The standard deviation of the distribution
4. (a) The concentration of phosphates $(\mathrm{mg} / \mathrm{kg})$ in a stream is taken in two seasons, as shown below

Dry season	18	20	22	15	16	13	15	18	16	21
Wet season	10	8	11	9	7	10	12	11		

Using the man-Whitney U test, determine whether the concentration between the two areas was different [10 marks]
(b) In a certain research, community members in two villages neighboring a national park were asked to rate the benefits they got from the community social responsibility projects by park management. The responses are as given in the below

	Village

MHIM 841/MATH 800

Rating	Lake view	Manyani
Very high	10	4
High	12	4
Moderate	15	13
Low	8	8
Very low	3	8

By use of a x^{2} test, test the association between the rating and project [10 marks]

Note:
$H=\frac{12 S S_{B}}{N_{T}\left(N_{T}+1\right)}, S S_{B}=\frac{T_{1}^{2}}{N_{1}}+\frac{T_{2}^{2}}{N_{2}}+\ldots+\frac{T_{K}^{2}}{N_{K}}-\frac{N_{T}\left(N_{T}+1\right)^{2}}{4}, S p=\sqrt{\frac{S_{1}^{2}+S_{2}^{2}}{2}}, x^{2}=\sum \frac{(0-E)^{2}}{E}, U=N_{1} N_{2}+\frac{N_{1}\left(N_{1}+1\right)}{2}-R_{1}$,

