CHEM 120

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY

CHEM 120: PHYSICAL CHEMISTRY 1

STREAMS:

TIME: 2 HOURS

DAY/DATE: TUESDAY 23/03/2021

11.30 A.M – 1.30 P.M

INSTRUCTIONS:

Answer question one and any other two questions

USEFUL DATA

1 cal = 4.184J

1 atm = 101.325k pa = 760 Torr

1 L atm = 101.325 J

 $\theta \,^{\circ}C = \,^{\circ} k \, -273.15 / 0 \,^{\circ}C = 273$

- $1 J = 1 kg m^2 s^{-2} = 1 AVS$
- $1 N = 1 kgm s^{-2}$

1 pa = 1N M^{-2} =1 kg $m^{-1}s^{-2}$ 1J m^{-3}

- $C=3.0 \times 10^8 \text{ m5}$
- **R** = 8.314J $K^{-1}mol^{-1}$ = 8.314 $x 10^{-2}$ L bar $k^{-1}mol^{-1}$
- $\mathbf{R} = \mathbf{8.20574} \mathbf{x} \ 10^{-2} \mathbf{L} \mathbf{atm} k^{-1} mol^{-1}$
- **R** = 6.23637 x 10^{1} *L*Torr k^{-1} mol⁻¹

 $H=6.62608 \text{ x } 10^{-34} \text{JS}$

 $\mathbf{F} = \mathbf{NA} \ \mathbf{e} = \mathbf{9.64853} \ \mathbf{x} \ 10^4 \ (mol^{-1})$ $\mathbf{h} = \frac{h}{2\pi} = \mathbf{1.05457} \ \mathbf{x} \ 10^{-34} \ \mathbf{JS}$ $\mathbf{K} = \mathbf{1.38065} \ \mathbf{x} \ 10^{-23} \ J \ K^{-1}$ $\mathbf{e} = \mathbf{1.602176} \ \mathbf{x} \ 10^{-19} \ C$ $\mathbf{1} \ m^3 = \mathbf{10}^3 \ dm^3$

QUESTION ONE (30 MARKS)

1.(a)(i) Briefly discuss how kinetic theory explains the existence of a minimum temperature, ok.[3 marks]

(ii) Write short notes on how kinetic theory explains the greater effusion rate of a gas with a low formula mass compared to one with a higher formula mass.[3 marks]

(iii) Calculate the density of moist air in gm $litre^{-1}$ of moist air at 298.15k and I bar pressure when dry air contains 79% nitrogen and 21% oxygen by volume. The relative humidity of moist air is 60%. The aqueous tension at 298.15k is 0.032 bar { R = 0.0821L atm $K^{-1}mol^{-1}$ 1 atm = 1.01325 bar } [3 marks]

(b) (i) From an economic point of view, why would an industrial corporation want to know about the factors that affect the rate of a reaction. [5 marks]

(ii) The reaction iodine with hypochloride ion ocl- (which is found in liquid bleach) follows the equation : O $Cl^{-\ell+I^{-\ell-or^{-i\sigma^{-i}}\ell}}$

It is a rapid reaction that gives the following rate data

Initial concentration

$$mol L^{-1}$$

$$ocl^{-ii} \qquad [I^{-ii} \qquad \text{Rate of formation of } cl^{-i(mol L^{-1}5^{-1})i}$$

Page 2 of 7

$1.7 \ge 10^{-3}$	$1.7 \ge 10^{-3}$	1.75×10^4
3.4×10^{-3}	$1.7 \ge 10^{-3}$	3.5×10^4
$1.7 \ge 10^{-3}$	3.4×10^{-3}	3.50×10^4

(I)	Determine the	rate law for the r	eaction.	$[2\frac{1}{2} \text{ marks}]$
·>				

(II) Calculate the value of the rate constant with its correct units.

(c) The reaction $N_2 O_4(g) \rightleftharpoons 2NO_2(g)$ is endothermic, with $\Delta H^\circ = +56.9 k i$. How will the amount of NO_2 at equilibrium be affected by:

(i) Adding $N_2 O_4(g)$	[1 mark]
(ii) Lowering the pressure by increasing the volume of the container.	[1 mark]
(iii) Raising the temperature.	$[1\frac{1}{2} \text{ marks}]$
(iv) Adding a catalyst to the system?	$[1\frac{1}{2} \text{ marks}]$
(v) Which of the above changes will alter the value of K_c	[½ mark]
(d) 25 ml af a 0.15 M solution of the ammonia solution $(K = 1.75 \times 10^{-5})$ is	titue at a d with 0.2 N

(d) 25ml of a 0.15M solution of the ammonia solution $(K_b = 1.75 \times 10^{-5} i)$ is titracted with 0.3 M H_2SO_4 .. Calculate the pH at the ;

(i) Start of titration	[2 marks]
(ii) After addition of 4ml, 6.25 ml and 10ml of titrant.	[5 marks]

QUESTION TWO (20 MARKS)

2.(a) (i) Calculate the electron affinity of chlorine from the following data at 298K.

 $\mathrm{Na}(\mathbf{g}) = Na^{+\mathbf{i}(g) + e^{-\mathbf{i}\Delta H^{\circ} = 499.8 \, \mathrm{KJ} \, \mathbf{i}}}$

 $\frac{1}{2} cl_2(g) = cl(g) \Delta H^{\circ} = +120.9 KJ$

 $Na(s) = Na(g) \Delta H^{\circ} = +108.3 KJ$

 $Na(s) + \frac{1}{2} cl_2(g) = Nacl(s) \Delta H = 411.3 KJ$

 $Na^{+i(g)+cl^{-i(g)=Nacl(s)\Delta H^\circ=-975.4KJi}i}$

(ii) Using the data (all values in KJ mol^{-1} at 298K) given below. Calculate the bond enthalpies of c-c and C- H bonds.

ΔH° (combustion) $C_2 H_6 = -1556.45$	
ΔH° (combustion) $C_2 H_6 = -2217.52$	
$\Delta H^{\circ}{}_{C}(S) \rightarrow C(g) = +719.65$	
$\Delta H^{\circ}_{H} \rightarrow +436.0$	
$\Delta H {}^{\circ}F H_2O(L) \rightarrow -285.8$	
$\Delta H ^{\circ}CO_{2[g]} \rightarrow -393.30$	[5 marks]
(b) From the data at 298K	
$\frac{1}{2}H_2(g) + \frac{1}{2}O_2(g) = OH(g) \Delta H^{\circ} = 42.09 \text{KJ } mol^{-1}$	
$H_2(g) + \frac{1}{2}O_2(g) = H_2O(g) \Delta H^\circ = 241.83 \text{ KJ } mol^{-1}$	
$H_2(g) = 2 H(g) \Delta H^{\circ} = 435.94 \text{KJ mol}^{-1}$	
$O_2(g) + 2O(g) \Delta H^{\circ} = 495.04 \text{KJ mol}^{-1}$	
Compute ΔH° for reaction	
(i)OH(g) = H(g) + Og	$[1\frac{1}{2} \text{ marks}]$
(ii) $H_2O(g) = 2H(g) + O(g)$	$[1\frac{1}{2} \text{ marks}]$
(iii) $H_2O(g) = H(g) + OH(g)$	$[1\frac{1}{2} \text{ marks}]$

(c) CO_2 reacts with graphite to form CO. Based on the following data given below, calculate ΔE (change in internal energy for the reaction)

 $C_{graphite}$ + $CO_2(g) \rightarrow 2CO(g)$

 Δ H (enthalpy change) at 25°C and 1.0 bar pressure = 172.46KJ. Density of graphite = 2.25g cm^{-1} {R=8.314J $mol^{-1}K^{-1}$, I bar = 10⁵ pa, 1 pa = 1N M^{-2} = 1kg $m^{-1}s^{-2}$ = 1J m^{-3} } [4¹/₂ marks] (d)(i) Calculate the potential of the electrochemical cell shown above. $[1\frac{1}{2} \text{ marks}]$

(ii) Calculate the concentration of $Fe^{3+i\delta}$ in an electrochemical cell similar to that shown above, if the concentration of HCL in the left hand cell is 1.0m, the concentration of Fe cl_2 in the right hand cell is 0.0151m and the measured potential is +0.546v.

$$Agcl_{|s|} + e^{-it} \rightleftharpoons Ag(s) + cl^{-i+0.223t} E^{\circ} \text{ at } 25^{\circ}V$$

$$Fe^{3+it} + e^{-i \rightleftharpoons Fe^{24i+0.77t}t} F = 96,487 \qquad [1\frac{1}{2} \text{ marks}]$$

QUESTION THREE (20 MARKS)

3.(a) (i) Write short notes on the following:

(I) Indicator errors in determination of end point of a titration using visual indicator.

marks]	[6
(II) Selection of pH indicator for a particular titration.	[2 marks]
(ii) Discuss Buffer capacity.	[3 marks]
	10 DV NH al

F /

(iii) Calculate the buffer capacity of a buffer solution containing 0.4M NH_3 and 0.2M NH_4cl [$pk_b=4.76i$ [3 marks]

(b) For the isomerization of cyclopropane to propene.

 $\triangle \rightarrow =$ propene

Cyclopropane

 $C_{3}H_{7}$

 $C_{3}H_{7}$

The following data were obtained

T°C	477	523	577	623
K,S^{-1}	0.00018	0.0027	0.030	0.26

Calculate without using graph;

(i)	Frequency factor.	[5 marks]
(ii)	The activation energy.	[½ mark]
(iii)	Fraction of molecules with minimum energy for reaction at temperatu	are $523^{\circ}C$. [R =
	$8.314 \text{J} \text{ mol}^{-1} \text{K}^{-1}$	[½ mark]

QUESTION FOUR (20 MARKS)

4.(a) (i) For the reaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + Heat$$

Write expression for K_c and K_p and show how they are related when the initial moles of $N_2(g)$ and $H_2(g)$ were different. [6 marks]

(ii) 16.4g potassium iodine was dissolved in 500_{cm}^3 of water and about 1.0g of iodine was dissolved in $100 \ cm^3$ of benzene. The two solutions were then mixed and allowed to stand subsequent titrations showed 10 cm^3 of the benzene layer was equivalent of 5.1 cm^3 of m/10 sodium thiosulphate while 50 cm^3 of the aqueous layer was equivalent to 2.9 cm^3 of m/10 thiosulphate. The distribution coefficient between benzene and water is 130. Calculate the value of equilibrium reaction KI $+I_2+KI_3$

[I = 126.9043, 0 = 15.9994, k = 39.0989, S = 32.066J

(b) (i) Comment on the following statement: "Gases cannot be liquefied unless their temperature are lowered to values equal to or below their critical temperature. [12 marks]

(ii) The compressibility factor z for N_2 at -50°C and 800—atm pressure is 1.95 and at 100°C and 200 atm it is 1.10. A certain mass of nitrogen occupied a volume of 1.0 litre at -50°C and 800 atm. Calculate the volume occupied by the same quality of nitrogen at 100°C and 200 atm.

marks]

(c) In an experiment to determine the percentage of gaseous mixture at $25 \,^{\circ}C$, a gas cylinder was evacuated and a gas Y was let in until the pressure was one atmosphere. The cylinder was then weighted and compressed inert gas X was forced in until W grams had been added. If the volume of the cylinder was 82 litres, calculate the;

(i) Mass of gas x that gives a mixture of composition 20 mole percent Y and 80 mole percent X given the molar mass of X is 20g. [3 marks]

(ii) Total pressure of the final of mixture.

[1¹/₂ marks]

 $[1\frac{1}{2}]$
