CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY

CHEM 120: PHYSICAL CHEMISTRY 1

STREAMS:
TIME: 2 HOURS
DAY/DATE: TUESDAY 23/03/2021
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

Answer question one and any other two questions
USEFUL DATA
$1 \mathrm{cal}=4.184 \mathrm{~J}$
$1 \mathrm{~atm}=101.325 \mathrm{k} \mathrm{pa}=760 \mathrm{Torr}$
$1 \mathrm{~L} \mathbf{~ a t m}=101.325 \mathrm{~J}$
$\theta^{\circ} \mathrm{C}=\mathbf{T}^{\circ} \mathbf{k}-\mathbf{2 7 3 . 1 5} / \mathbf{0}^{\circ} \mathrm{C}=273$
$\mathbf{1} \mathbf{J}=\mathbf{1} \mathbf{k g} m^{2} s^{-2}=\mathbf{1} \mathbf{A V S}$
$\mathbf{1} \mathbf{N}=\mathbf{1} \mathbf{k g m ~} \mathrm{s}^{-2}$
$\mathbf{1} \mathbf{p a}=\mathbf{1} \mathbf{N} M^{-2}=\mathbf{1} \mathbf{k g} m^{-1} s^{-2} \mathbf{1} \mathbf{J m}^{-3}$
$\mathbf{C}=\mathbf{3 . 0} \times 10^{8} \mathrm{~m} 5$
$\mathbf{R}=\mathbf{8 . 3 1 4 J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=8.314 \times 10^{-2} \mathbf{L}$ bar $\mathrm{k}^{-1} \mathrm{~mol}^{-1}$
$\mathbf{R}=\mathbf{8 . 2 0 5 7 4} \times 10^{-2} \mathbf{L} \mathbf{~ a t m} \mathrm{k}^{-1} \mathrm{~mol}^{-1}$
$\mathbf{R}=\mathbf{6 . 2 3 6 3 7} \times 10^{1} L \mathbf{T o r r} \mathrm{k}^{-1} \mathrm{~mol}^{-1}$
$\mathbf{H}=\mathbf{6 . 6 2 6 0 8} \times 10^{-34} \mathbf{J S}$

$$
\begin{aligned}
& \mathbf{F}=\mathbf{N A} \mathbf{e}=\mathbf{9 . 6 4 8 5 3} \times 10^{4}\left(\mathrm{~mol}^{-1}\right. \\
& \mathbf{h}=\frac{h}{2 \pi}=\mathbf{1 . 0 5 4 5 7} \times 10^{-34} \mathbf{J S} \\
& \mathbf{K}=\mathbf{1 . 3 8 0 6 5} \times 10^{-23} \mathrm{~J} \mathrm{~K} \\
& \mathbf{- 1} \\
& \mathbf{e}=\mathbf{1 . 6 0 2 1 7 6} \times 10^{-19} \mathrm{C} \\
& \mathbf{1} \mathrm{~m}^{3}=10^{3} \mathrm{dm}^{3}
\end{aligned}
$$

QUESTION ONE (30 MARKS)

1.(a)(i) Briefly discuss how kinetic theory explains the existence of a minimum temperature, ok.
marks]
(ii) Write short notes on how kinetic theory explains the greater effusion rate of a gas with a low formula mass compared to one with a higher formula mass.
(iii) Calculate the density of moist air in gm litre $^{-1}$ of moist air at 298.15 k and I bar pressure when dry air contains 79% nitrogen and 21% oxygen by volume. The relative humidity of moist air is 60%. The aqueous tension at 298.15 k is $0.032 \mathrm{bar}\left\{\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} 1 \mathrm{~atm}=\right.$ 1.01325 bar $\}$
(b) (i) From an economic point of view, why would an industrial corporation want to know about the factors that affect the rate of a reaction.
(ii) The reaction iodine with hypochloride ion ocl- (which is found in liquid bleach) follows the

It is a rapid reaction that gives the following rate data
Initial concentration

$$
\begin{aligned}
& \mathrm{mol} \mathrm{~L}^{-1} \\
& \mathrm{ocl}^{-i \omega} \quad\left[I^{-i \omega} \quad \text { Rate of formation of } \mathrm{Cl}^{-i\left(\mathrm{molL}^{-1} 5^{-1}\right) i}\right.
\end{aligned}
$$

1.7×10^{-3}	1.7×10^{-3}	1.75×10^{4}
3.4×10^{-3}	1.7×10^{-3}	3.5×10^{4}
1.7×10^{-3}	3.4×10^{-3}	3.50×10^{4}

(I) Determine the rate law for the reaction.
(II) Calculate the value of the rate constant with its correct units.
(c) The reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is endothermic, with $\Delta \mathrm{H}^{\circ}=+56.9 \mathrm{ki}$. How will the amount of NO_{2} at equilibrium be affected by:
(i) Adding $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(ii) Lowering the pressure by increasing the volume of the container.
(iii) Raising the temperature.
(iv) Adding a catalyst to the system?
(v) Which of the above changes will alter the value of K_{c} $\mathrm{H}_{2} \mathrm{SO}_{4}$.. Calculate the pH at the ;
(i) Start of titration
(ii) After addition of $4 \mathrm{ml}, 6.25 \mathrm{ml}$ and 10 ml of titrant.

QUESTION TWO (20 MARKS)

2.(a) (i) Calculate the electron affinity of chlorine from the following data at 298 K .

$1 / 2 \operatorname{cl}_{2}(g)=\operatorname{cl}(g) \Delta H^{\circ}=+120.9 \mathrm{KJ}$
$\mathrm{Na}(\mathrm{s})=\mathrm{Na}(\mathrm{g}) \Delta H^{\circ}=+108.3 \mathrm{KJ}$
$\mathrm{Na}(\mathrm{s})+1 / 2 c l_{2}(g)=\operatorname{Nacl}(\mathrm{s}) \Delta H=411.3 K J$

(ii) Using the data (all values in $\mathrm{KJ} \mathrm{mol}^{-1}$ at 298 K) given below. Calculate the bond enthalpies of $\mathrm{c}-\mathrm{c}$ and $\mathrm{C}-\mathrm{H}$ bonds.
$\Delta H^{\circ}($ combustion $) C_{2} H_{6}=-1556.45$
$\Delta H^{\circ}($ combustion $) C_{2} H_{6}=-2217.52$
$\Delta H^{\circ}{ }_{C}(S) \rightarrow C(g)=+719.65$
$\Delta H^{\circ}{ }_{H} \rightarrow+436.0$
$\Delta \mathrm{H}^{\circ} \mathrm{F} \mathrm{H}_{2} \mathrm{O}(L) \rightarrow-285.8$
$\Delta H^{\circ} \mathrm{CO}_{2(g)} \rightarrow-393.30$
(b) From the data at 298 K
$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{OH}(\mathrm{g}) \Delta H^{\circ}=42.09 \mathrm{KJ} \mathrm{mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta H^{\circ}=241.83 \mathrm{KJ} \mathrm{mol}^{-1}$
$H_{2}(g)=2 H(g) \Delta H^{\circ}=435.94 \mathrm{KJ} \mathrm{mol}^{-1}$
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=495.04 \mathrm{KJ} \mathrm{mol}^{-1}$
Compute ΔH° for reaction
(i) $\mathrm{OH}(\mathrm{g})=\mathrm{H}(\mathrm{g})+\mathrm{Og}$
(ii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=2 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
(iii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g})$
(c) CO_{2} reacts with graphite to form CO . Based on the following data given below, calculate ΔE (change in internal energy for the reaction)
$\mathrm{C}_{\text {graphite }}+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{H}$ (enthalpy change) at $25^{\circ} \mathrm{C}$ and 1.0 bar pressure $=172.46 \mathrm{KJ}$. Density of graphite $=2.25 \mathrm{~g}$ $\mathrm{cm}^{-1}\left\{\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \mathrm{I}\right.$ bar $\left.=10^{5} \mathrm{pa}, 1 \mathrm{pa}=1 \mathrm{NM}^{-2}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}=1 \mathrm{Jm}^{-3}\right\}$
[41/2 marks]
(d)(i) Calculate the potential of the electrochemical cell shown above.
[1 $1 / 2$ marks]
(ii) Calculate the concentration of $F e^{3+i 6}$ in an electrochemical cell similar to that shown above, if the concentration of HCL in the left hand cell is 1.0 m , the concentration of Fe_{2} in the right hand cell is 0.0151 m and the measured potential is +0.546 v .
$\operatorname{Agcl}_{(s)}+e^{-i \epsilon} \rightleftharpoons \mathrm{Ag}(\mathrm{s})+c l^{-i+0.223 i} E^{\circ}$ at $25^{\circ} \mathrm{V}$
$F e^{3+i i}+e^{-i=F e^{2 t+077 l i} i} \mathrm{~F}=96,487$
[1 $1 / 2$ marks]

QUESTION THREE (20 MARKS)

3.(a) (i) Write short notes on the following:
(I) Indicator errors in determination of end point of a titration using visual indicator.
marks]
(II) Selection of pH indicator for a particular titration.
(ii) Discuss Buffer capacity.
(iii) Calculate the buffer capacity of a buffer solution containing $0.4 \mathrm{M} \mathrm{NH}_{3}$ and 0.2 M NH 4 cl [$p k_{b}=4.76$ i
(b) For the isomerization of cyclopropane to propene.
$\triangle \quad \rightarrow \quad=$
propene

Cyclopropane

$$
\mathrm{C}_{3} \mathrm{H}_{7}
$$

$\mathrm{C}_{3} \mathrm{H}_{7}$
The following data were obtained

$\mathrm{T}^{\circ} \mathrm{C}$	477	523	577	623
$\mathrm{~K}, \mathrm{~S}^{-1}$	0.00018	0.0027	0.030	0.26

Calculate without using graph;
(i) Frequency factor.
(ii) The activation energy.
(iii) Fraction of molecules with minimum energy for reaction at temperature $523^{\circ} \mathrm{C} .[\mathrm{R}=$ $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ [$1 / 2$ mark]

QUESTION FOUR (20 MARKS)

4.(a) (i) For the reaction
$N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+$ Heat
Write expression for K_{c} and K_{p} and show how they are related when the initial moles of $N_{2}(g)$ and $\mathrm{H}_{2}(\mathrm{~g})$ were different.
(ii) 16.4 g potassium iodine was dissolved in $500 \mathrm{~cm}^{3}$ of water and about 1.0 g of iodine was dissolved in $100 \mathrm{~cm}^{3}$ of benzene. The two solutions were then mixed and allowed to stand subsequent titrations showed $10 \mathrm{~cm}^{3}$ of the benzene layer was equivalent of $5.1 \mathrm{~cm}^{3}$ of $\mathrm{m} / 10$ sodium thiosulphate while $50 \mathrm{~cm}^{3}$ of the aqueous layer was equivalent to $2.9 \mathrm{~cm}^{3}$ of m/10 thiosulphate. The distribution coefficient between benzene and water is 130 . Calculate the value of equilibrium reaction $\mathrm{KI}+I_{2}+K I_{3}$
$[\mathrm{I}=126.9043,0=15.9994, \mathrm{k}=39.0989, \mathrm{~S}=32.066 \mathrm{~J}$
(b) (i) Comment on the following statement: " Gases cannot be liquefied unless their temperature are lowered to values equal to or below their critical temperature. [12 marks]
(ii) The compressibility factor z for N_{2} at $-50^{\circ} \mathrm{C}$ and 800 -atm pressure is 1.95 and at $100^{\circ} \mathrm{C}$ and 200 atm it is 1.10 . A certain mass of nitrogen occupied a volume of 1.0 litre at $-50^{\circ} \mathrm{C}$ and 800 atm. Calculate the volume occupied by the same quality of nitrogen at $100^{\circ} \mathrm{C}$ and 200 atm .
marks]
(c) In an experiment to determine the percentage of gaseous mixture at $25^{\circ} \mathrm{C}$, a gas cylinder was evacuated and a gas Y was let in until the pressure was one atmosphere. The cylinder was then weighted and compressed inert gas X was forced in until W grams had been added. If the volume of the cylinder was 82 litres, calculate the;
(i) Mass of gas x that gives a mixture of composition 20 mole percent Y and 80 mole percent X given the molar mass of X is 20 g .
[3 marks]
(ii) Total pressure of the final of mixture.

