CHEM 110

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE IN BACHELOR OF

CHEM 110: INORGANIC CHEMISTRY

STREAMS:

DAY/DATE: TUESDAY 04/05/2021

11.30 A.M - 1.30 P.M.

TIME: 2 HOURS

INSTRUCTIONS

Answer Question One and any other Two Questions

QUESTION ONE [30 MARKS]

(a) Calculate the number of carbon atoms in 10.0 g of NaHCO ₃	(2 Marks)
(b) Acetic acid contains the elements carbon, hydrogen, and oxygen. A 4.24 mg	sample of acetic
acid is completely burned in air to give 6.21 mg of carbon dioxide and 2.54 mg of	of water.
(i) Determine the empirical formula of acetic acid	(5 Marks)
(ii) Determine the molecular formula of acetic acid, given that the molecular mas	ss of acetic acid
is 60.0 g/mol	(2 Marks)
(c) Calculate the mass of $Ba(OH)_2$ required to prepare 2.50 L of a 0.060 M solution	ion of barium
hydroxide	(2 Marks)

(d) A bottle of concentrated hydrochloric acid is labeled 12.3M HCl. The specific density is given as 1.1906. Calculate:

(a) The mole fraction of HCl	(2 Marks)
(b) The molality of HCl	(2 Marks)
(c) The mass percent of HCl	(2 Marks)

(e) Calculate the wavelength of a photon whose energy is 4.10×10^{-19} J (2 Marks)

(f) Calculate the wavelength in nanometers of the line in the Lyman series that results from the			
transition $n = 4$ to $n = 1$	(2 Marks)		
(g) Calculate the wavelength in meters of an electron traveling at 1.24×10^7 m/s	(2 Marks)		
(h) Write the electronic configuration of the following species	(3 Marks)		
(i) Cl (ii) S^{2-} (iii) V^{2+}			
(i) State whether the following sets of qunatum numbers (n, l, m ₁ , m _s) are valid or invalid for an			

electron in an atom. I	For invalid sets explain v	why they are impossible	(4 Marks)
(i) (1, 0, 0, +1)	(ii) $(1, 3, 3, +\frac{1}{2})$	(iii) $(0, 1, 0, +\frac{1}{2})$	(iv) (2, 1, -1, + 3/2)

QUESTION TWO [20 MARKS]

(a) Consider the following species: CO_3^{2-} ; H_2O ; and NCl_3 :

(i) Write the Lewis structure for each of the species	(6 Marks)
(ii) Write the resonance structures of the CO_3^{2-} ion	(3 Marks)
(iii) Determine the molecular geometry and bond angle(s) of H ₂ O and NCl ₃	(3 Marks)
(b) State the main postulates of Bohr's model for the hydrogen atom.	(5 marks)

(c) State the type(s) of intermolecular forces that are present in each of the following molecules

(3

Marks)

(i) Br_2 (ii) H_2O (iii) ICl

QUESTION THREE [20 MARKS]

(a) Discuss the following intermolecular forces:	(6 Marks)
(i) Dipole-dipole forces (ii) Hydrogen bonding (iii) London dispersion forces	
(b) State the postulates of Dalton's atomic theory	(3 marks)
(c) Explain the periodic trends of the following	(6 marks)
(i) Ionization energy (ii) Electron affinity (iii) Atomic radii	
(d) (f) Calculate each of the following quantities:	

(i) the volume in milliliters of 2.26 M potassium hydroxide that contains 8.42 g of the solute (3 Marks) (ii) the number of Cu^{2+} ions in 52 L of a 2.3 M copper (II) chloride solution (2 Marks) **OUESTION FOUR [20 MARKS]** (a) Describe how to prepare 60.0 mL of 0.20 M HNO₃ solution, starting with a 4.00 M HNO₃ stock solution (2 Marks) (b) Draw a well labelled Born-Haber cycle for NaCl (5 Marks) (c) Write an orbital diagram for the ground state of the following species (3 Marks) (a) F (b) Co (c) P (d) A sucrose $(C_{11}H_{22}O_{11})$ solution that is 45.0% sucrose by mass has a density of 1.203 g/mL at 25°C. Calculate: (i) the molality of the solution (2 Marks) (ii) the molarity of solution (2 Marks) (iii) the mole fraction of sucrose (2 Marks) (e) Magnesium has three naturally occurring isotopes, Mg-24 (23.99 amu), Mg-25 (24.99 amu) and Mg-26 (25.98 amu). Calculate the atomic mass for magnesium given that the isotopic abundance of Mg-24 and Mg-26 are 78.70% and 11.17%, respectively (4 Marks).

Useful Constants

$$\label{eq:h} \begin{split} h &= 6.626 \times 10^{\text{-}34} \; \text{J/s} \\ c &= 3.0 \; \text{x} \; 10^8 \; \text{m/s} \\ N_\text{A} &= 6.022 \times 10^{\text{2}3} \end{split}$$

Page **3** of **3**