CHEM 110

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

KAUNIVER

CHEM 110: INORGANIC CHEMISTRY I

STREAMS:

DAY/DATE: FRIDAY 05/11/2021

CHUKA

INSTRUCTIONS:

• Answer question One (Compulsory) and any other Two questions

QUESTION ONE [30 MARKS]

(a) State each of the following:	(1 Mark)
(i) the law of multiple proportions (ii) the law of definite composition	
(b) Magnesium has three naturally occurring isotopes, Mg-24 (23.99 amu), Mg-	25 (24.99 amu)
and Mg-26 (25.98 amu). Calculate the atomic mass for magnesium given that th	e isotopic
abundance of Mg-24 and Mg-26 are 78.70% and 11.17%, respectively	(3 Marks)
(c) Given the following sets of electron quantum numbers (n, l, m_l , m_s), indicate	those that cannot
occur, and explain your answer (4 M	arks)
(i) 1, 1, 0, $-\frac{1}{2}$ (ii) 4, 2, -2, 0 (iii) 2, 3, 2, $+\frac{1}{2}$ (iv) 4, 0, 2, $+\frac{1}{2}$	
(d) Write the Lewis structures of each of the following species. In each case the	e central atom is
underlined	(6 Marks)
(i) $\underline{Xe}F_4$ (ii) $\underline{Cl}O_3^-$ (iii) $\underline{P}Cl_3$ (iv) $H_3\underline{O}^+$	
(e) Calculate the mass percent of each element present in propanoic acid (CH ₃ C	H ₂ COOH)

Marks)

(f) Calculate each of the following quantities:

UNIVERSITY

TIME: 2 HOURS

11.30 A.M - 1.30 P.M.

(3

(3

(i) the volume in milliliters of 2.26 M potassium hydroxide that contains 8.42 g of the solute

Marks)

(2 Marks)		
(1 Marks)		
esults from the		
(2 Marks)		
(h) Write the ground state electronic configuration of each of the following species (3 Marks)		

(i) Draw the orbital d	iagram for each of the following species	(2 Marks)
(i) O	(ii) Co	

QUESTION TWO [20 MARKS]

(a) Calculate:

(i) the wavelengths, in meters, of radiation with a frequency of $5.60 \times 10^{15} \text{ Hz}$	(2 Marks)
(ii) the energy of a photon with a wavelength of 492 nm	(2 Marks)
(iii) the de Broglie wavelength of a proton moving at a speed of $2.50 \times 10^7 \text{ m/s}$	(2 Marks)
(b) Arrange the following ions in order of increasing ionic radii: (i) Ca^{2+} , K^+ , Al^{3+} ;	(ii) Se ^{2-,} Br ⁻ ,
Te ²⁻	(3 Marks)
(c) Define electronegativity and arrange the following elements in order of increase	sing
electronegativity. B, Na, F, O	(3 Marks)
(d) A sucrose ($C_{11}H_{22}O_{11}$) solution that is 45.0% sucrose by mass has a density of	1.203 g/mL at
25°C. Calculate:	
(i) the molality of the solution	(2 Marks)
(ii) the molarity of solution	(2 Marks)
(iii) the mole fraction of sucrose	(2 Marks)
(e) State the postulates of Dalton's atomic theory	(2 Marks)

QUESTION THREE [20 MARKS]

(a) Consider the following species: SO_3^{2-} , CIF_3 , NO_3^{-} , BF_3 , and CIO_2

(i) Write the Lewis structure of each of the species	(5 Marks)
(ii) Determine the molecular geometry and the bond angles of the ClF_3 molecule	(1 ½ Marks)
(iii) Write the resonance forms of the NO ₃ ⁻ ion	(1½ Marks)
(iv) Determine the polarity of the BF ₃ molecule	(1 Mark)
(b) Discuss the Bohr model of the structure of the hydrogen atom	(5 Marks)
(c) Define electron affinity and arrange the following elements in order of increase	ing values of
electron affinity. Justify your order. K, Br, Cs, Cl	(3 Marks)
(d) State the type(s) of intermolecular forces that are present in each of the follow	ing species
	(3

Marks)

(i) CH₃OH (ii) CO₂ (iii) CH₃F

QUESTION FOUR [20 MARKS]

(a) Vitamin C (MM = 176.12 g/m	ol) is a compound comp	oosed of carbon, hydr	ogen and oxygen.
When a 1.000 g sample of vitamin C is burned in air, 1.50 g CO_2 and $0.41 \text{ g H}_2\text{O}$ are obtained.			
(i) Determine the empirical formul	a of vitamin C		(5 Marks)
(ii) Determine the molecular formu	ula of vitamin C		(2 Marks)
(b) For each of the following pairs, chose the member with the lower boiling point. Explain your			
reason in each case			(4½ Marks)
(i) HI or HBr	(ii) CH ₄ or H ₂ O	(iii) N ₂ or Cl ₂	
(c) With the aid of formal charges, explain which Lewis formula is more likely to be correct			

(3

Marks)

(d) Determine the total capacity for electrons in: (i) $n = 4$	(ii) d sublevel	(iii) p orbital
		(11/2
Marks)		
(e) An aqueous solution of urea, $CO(NH_2)_2$, is labelled 2.57	7m. Calculate:	
(i) the concentration of urea in ppm		(2 Marks)
(ii) the mole fraction of water		(2 Marks)