CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION
RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURAL EDUCATION AND EXTENSION, BACHELOR OF SCIENCE IN AGRICULTURAL ECONOMICS, AGRICULTURE, BACHELOR OF SCIENCE IN FOOD SCIENCE AND TECHNOLOGY, BACHELOR OF SCIENCE IN ENVIRONMENTAL SCIENCE, BACHELOR OF SCIENCE IN NATURAL RESOURCES, BACHELOR OF SCIENCE IN WILDLIFE ENTERPRISE \& MANAGEMENT AND BACHELOR OF SCIENCE IN ANIMAL SCIENCE AND HORTICULTURE

CHEM 102: GENERAL INORGANIC AND PHYSICAL CHEMISTRY

STREAMS: AS ABOVE
TIME: 2 HOURS

DAY/DATE: WEDNESDAY 11/08/2021
11.30 A.M - 1.30 P.M.

INSTRUCTIONS

- Answer all questions

QUESTION ONE (30 MARKS)
a) State the Pauli's exclusion principle.
b) Write the ground state electronic configuration of;
i. Carbon atom $(\mathrm{C}=6)$
ii. Sulfur atom $(S=16)$
c) Write the nuclear symbol for the element used in diagnostic bone scans. It has 31 protons and 38 neutrons.
(1 marks)
d) Silver has two naturally occurring isotopes. 107-Ag (106.90509 amu; 51.84\%) and Ag-109 ($108.90476 \mathrm{amu} ; 48.16 \%$). Calculate the atomic mass of silver.
e) Calculate the mass percent of each element in acetaminophen $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}\right)$, the active ingredient of some common pain killers.
f) State the four quantum numbers and describe their significance.
(4 marks)
g) An organic compound contains $74.0 \% \mathrm{C}, 8.60 \% \mathrm{H}$ and $17.4 \% \mathrm{~N}$. determine the empirical formula for the compound.
(4 marks)
h) Consider the following reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

(i) Write the expression for the equilibrium constant (Kc).
(ii) Calculate Kc using the following concentrations of each substance at equilibrium: $\left[\mathrm{H}_{2}\right]=$

$$
\begin{equation*}
0.95 \mathrm{M} ;\left[\mathrm{I}_{2}\right]=0.78 \mathrm{M} ;[\mathrm{HI}]=0.27 \mathrm{M} \tag{2marks}
\end{equation*}
$$

i) Calculate the pH of a urine sample that has an $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of $1.0 \times 10^{-5} \mathrm{M}$. and classify the solution as acidic, basic, or neutral.
j) A 5.0 ml sample of CO_{2} gas is enclosed in a gas tight syringe at $22^{\circ} \mathrm{C}$. If the syringe is immersed in an ice bath $\left(0^{\circ} \mathrm{C}\right)$, calculate the new gas volume, assuming that pressure is held constant
marks)
k) A sample of gas has an initial volume of 158 mL at a pressure of 735 mm Hg and a temperature of $34^{\circ} \mathrm{C}$ If the gas is compressed to a volume of 108 mL and heated to a temperature of $85^{\circ} \mathrm{C}$, calculate its final pressure in millimeters of mercury.

QUESTION TWO (20 MARKS)

a) Calculate the number of molecules that are contained in a $325-\mathrm{mg}$ tablet of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right.$, molar mass $180.2 \mathrm{~g} / \mathrm{mol}$).
b) Calculate the pH of a urine sample that has an $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of $1.0 \times 10^{-5} \mathrm{M}$. and classify the solution as acidic, basic, or neutral.
c) Calculate the pH of $0.0356 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution.
d) The following data were measured for the reduction of nitric oxide with hydrogen
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

| Initial concentration $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | |
| :---: | :---: | :---: |
| $[\mathrm{NO}]$ | |\(\left.\quad \begin{array}{c}Initial rate of formation of

\left(\mathrm{HH}_{2}\right]\end{array}\right)\)

Determine the rate law for the reaction
e) Explain how the real gases deviate from the ideal gases in obeying the ideal gas law
f) For each of the following reactions, indicate the Brønsted-Lowry acid, base, conjugate acid and conjugate base.
(4 marks)
(i) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NO}_{2}^{-i, b}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$

QUESTION THREE (20 MARKS)

a) Explain briefly how the following properties of the elements vary across a period and down a group in the periodic table (6 marks)
i. Atomic radius
ii. Ionization energy
iii. Electronegativity
b) State the postulates of Bohr's model of an atom.
(3 marks)
c) Calculate the wavelength in nanometers of a transition in a hydrogen atom from $n=5$ to $n=2$ $\left(\mathrm{RH}=1.097 \times 10^{-2} \mathrm{~nm}^{-1}\right)$
d) Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in a beverage that has a pH of 3.15. (5 marks)
e) Calculate the volume occupied by 25 g of CO_{2} gas at 1.00 atm and $37^{\circ} \mathrm{C}$.

