CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURAL EDUCATION AND EXTENSION, BACHELOR OF SCIENCE IN AGRICULTURAL ECONOMICS, AGRICULTURE, BACHELOR OF SCIENCE IN FOOD SCIENCE AND TECHNOLOGY, BACHELOR OF SCIENCE IN ENVIRONMENTAL SCIENCE, BACHELOR OF SCIENCE IN NATURAL RESOURCES, BACHELOR OF SCIENCE IN WILDLIFE ENTERPRISE & MANAGEMENT AND BACHELOR OF SCIENCE IN ANIMAL SCIENCE AND HORTICULTURE

CHEM 102: GENERAL INORGANIC AND PHYSICAL CHEMISTRY

STREAMS: AS ABOVE

DAY/DATE: WEDNESDAY 11/08/2021 INSTRUCTIONS

• Answer all questions

QUESTION ONE (30 MARKS)

a) State the Pauli's exclusion principle.

b)Write the ground state electronic configuration of;

- i. Carbon atom (C = 6)
- ii. Sulfur atom (S=16)
- c) Write the nuclear symbol for the element used in diagnostic bone scans. It has 31 protons and 38 neutrons. (1 marks)
- d)Silver has two naturally occurring isotopes. 107-Ag (106.90509 amu; 51.84%) and Ag-109 (108.90476 amu; 48.16%). Calculate the atomic mass of silver. (3 marks)

TIME: 2 HOURS

11.30 A.M - 1.30 P.M.

(1 mark)

(2 marks)

e) Calculate the mass percent of each element in acetaminophen (C₈H₉NO₂), the active ingredient of some common pain killers.
 (3 marks)

f) State the four quantum numbers and describe their significance. (4 marks)

g)An organic compound contains 74.0% C, 8.60% H and 17.4% N. determine the empirical formula for the compound. (4 marks)

h)Consider the following reaction.

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

- (i) Write the expression for the equilibrium constant (Kc). (1 mark)
- (ii) Calculate Kc using the following concentrations of each substance at equilibrium: $[H_2] = 0.95 \text{ M}; [I_2] = 0.78 \text{ M}; [HI] = 0.27 \text{ M}.$ (2 marks)
- i) Calculate the pH of a urine sample that has an H_3O^+ concentration of 1.0×10^{-5} M. and classify the solution as acidic, basic, or neutral. (3 marks)
- j) A 5.0ml sample of CO₂ gas is enclosed in a gas tight syringe at 22°C. If the syringe is immersed in an ice bath (0°C), calculate the new gas volume, assuming that pressure is held constant

(2

marks)

k) A sample of gas has an initial volume of 158 mL at a pressure of 735 mm Hg and a temperature of 34°C If the gas is compressed to a volume of 108 mL and heated to a temperature of 85°C, calculate its final pressure in millimeters of mercury. (3 marks)

QUESTION TWO (20 MARKS)

a) Calculate the number of molecules that are contained in a 325-mg tablet of aspirin (C₉H₈O₄, molar mass 180.2 g/mol). (2 marks)
b) Calculate the pH of a urine sample that has an H₃O⁺ concentration of 1.0 × 10⁻⁵ M. and classify the solution as acidic, basic, or neutral. (3 marks)
c) Calculate the pH of 0.0356 M Ca(OH)₂ solution. (3 marks)
d) The following data were measured for the reduction of nitric oxide with hydrogen

Initial concentration (mol L ⁻¹)		Initial rate of formation of
[NO]	$[H_2]$	(CH ₃) ₃ COOH (mol L ⁻¹ S ⁻¹)
0.10	0.10	1.23×10-3
0.10	0.20	2.46×10 ⁻³
0.20	0.10	4.92×10 ⁻³
\mathbf{D} (1 (1	C (1 ()	

 $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$

Determine the rate law for the reaction

(6 marks)

e) Explain how the real gases deviate from the ideal gases in obeying the ideal gas law

(2 marks)

 f) For each of the following reactions, indicate the Brønsted-Lowry acid, base, conjugate acid and conjugate base.

(4 marks)

(i)
$$H_3O^+(aq) + CN^-(aq) \rightleftharpoons HCN(aq) + H_2O$$

(ii) $HNO_2(aq) + OH^-(aq) \rightleftharpoons NO_2^{-ii}(aq) + H_2O$

QUESTION THREE (20 MARKS)

- a) Explain briefly how the following properties of the elements vary across a period and down a group in the periodic table (6 marks)
 - i. Atomic radius
 - ii. Ionization energy
 - iii. Electronegativity
- b) State the postulates of Bohr's model of an atom. (3 marks)
- c) Calculate the wavelength in nanometers of a transition in a hydrogen atom from n=5 to n=2 (RH = 1.097×10^{-2} nm⁻¹) (3 marks)
- d) Calculate the concentration of H_3O^+ and OH^- in a beverage that has a pH of 3.15. (5 marks)
- e) Calculate the volume occupied by 25g of CO_2 gas at 1.00 atm and $37^{\circ}C$. (3 marks)

* *	
*Lanthanide series **Actinide series	Hydrogen 1000 122000 Francium Francium Francium Francium Francium
e series eries	A Benylium 9002 9002 12 12 12 12 12 12 12 12 12 12 12 12 12
57 Lanthanum 138.905 Actinium [227]	*** 89-102
58 Cerium 140,116 75 75 75 75 75 75 75 75 75 75 75 75 75	Averag Averag 21 21 21 21 21 21 21 21 21 21
59 Pr Praseodymium 140.908 91 91 Protactinium 231.096	Alomic Number Symbol Name Average Atomic Mass Average Atomic Mass andom Tranum 4986 4987 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 72 72 71 72 72 75 75 75 75 75 75 75 75 75 75 75 75 75
60 Neodymium 144.242 238.029	Name Name C Mass C Mass
61 Promethium [145] Neptunium [237]	- 6 - Carbon - 12.011 - 12.011
62 Samarium 150.36 Plutonium [244]	As TC Technology 107 107 107 107
63 Europium 151.984 Americium [243]	Authenium 190.22 Hassum
64 Gadolinium 157.25 96 98 Cunium [247]	non net net net net net net net net net ne
97 BR BR [247]	metals monmetals metaloids metaloids metaloids <u>Ni Ni 27</u> 28 38 38 38 38 38 38 38 38 38 38 38 38 38
66 Dy Dysprosum 162.500 98 Californium [251]	
67 Homium 164.930 BES Ensteinium [252]	30 5.23 5.25 5.38 5.39 65.38 Cadmium 112.414 112.414 112.414
68 167.259 Fermium [257]	Aluminum 1088 1088 1088 1088 1088 1088 1088 108
69 Tm 168.334 101 Mendelekum [256]	
70 Yhterbium 173,045 Nobelium (259)	Narospinova 14.007 15 15 15 14.007 14.007 15 15 15 14.007 14.007 15 15 15 15 15 15 15 15 15 15 15 15 15
	Unservice 15.889 16.899 16.999 16.
	9 Fluorine 18.399 18.399 17 19 17 17 18 12 5.04 17 19 17 19 17 19 17 17 17 17 17 17 17 17 17 17 17 17 17