COMP 420

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 420: COMPUTER GRAPHICS

STREAMS: BSC (COMPUTER SCIENCE) Y4S1 TIME: 2 HOURS

DAY/DATE: FRIDAY 07/12/2018

11.30 A.M. – 1.30 P.M.

[8 marks]

INSTRUCTIONS:

• Attempt question ONE in section A and any other two questions in section B

SECTION A (30 MARKS)-COMPULSORY

QUESTION ONE

a)	Using examples,	discuss the following	transformations:	[6 marks]
----	-----------------	-----------------------	------------------	-----------

- i. Reflection
- ii. Shear mapping
- b) Define the following terms:
 - i. Computer graphic.
 - ii. Scalar.
 - iii. Point.
 - iv. Line.

c)	List FOUR input devices of multimedia.	[4 marks]
d)	Briefly explain the term scan conversion.	[2 marks]
e)	Define refresh frame buffer.	[2 marks]
f)	Define the term aliasing and how to prevent it.	[4 marks]

Page 1 of 3

COMP 420

g) Differentiate between lossy and lossless compression algorithms. [4 marks]

SECTION B: ATTEMPT ANY TWO QUESTIONS (40 MARKS) QUESTION TWO (20 MARKS)

a) Differentiate between a local illumination model and global illumination model

[1]	markel	
4	marks	

- b) Draw a line using the digital Differential analyzer line drawing algorithm starting at point (4,4) and ends at point (12,10) [8 marks]
- c) Discuss the Cohen- Sutherland line clipping algorithm. [8 marks]

QUESTION THREE (20 MARKS)

a)	Explain the main functions used in OpenGL.	
	[8 marks]	
b) Explain the meaning of the term parallel projection and e		where it
	is most applicable.	[6
	marks]	
c)	Find the angle between vectors $(3, 7)$ and $(-4, 5)$.	[6
	marks]	

QUESTION FOUR (20 MARKS)

a)	Differentiate between diffuse reflection and specular reflection	on. [4 marks]		
b)	i) Derive the following Rotation Identity Matrix:	[4 marks]		
	$x' = x \cos(\theta) - y \sin(\theta)$			
	$y' = x \sin(\theta) + y \cos(\theta)$			
ii) Find the transformed point, P', caused by rotating $P=(3, 2)$ about the or				
	Through an angle of 90°. [
c)	c) Using a suitable diagram briefly explain the various components			
	functions in a CRT.	[8 marks]		
QUESTION FIVE (20 MARKS)				
a) i.	Explain the following surface detection methods: Z-Buffer Method	[8 marks]		

ii. Binary Space Partitioning(BSP) Tree Method

COMP 420

- b) Draw a circle centered at point (5,5) and has a radius of 6 units using the polar coordinates method [6 Marks]
- c) Assuming that a certain full-color (24 bit per pixel) RGB raster system has a 512 by 512 frame buffer, how many distinct color choices (intensity levels) would be available? [6 marks]
