MATH 933

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

MATH 933: RECENT TRENDS IN DYNAMICAL SYSTEMS

STREAMS: PHD MATHS HOURS DAY/DATE: THURSDAY 07/10/2021		TIME: 3	
		2.30 P.M – 5.30 P.M.	
<u>INS7</u> •			
QUE	ESTION ONE (20 MARKS)		
(a)	Define the following terms		
	(i) Autonomous system	(2 marks)	

(1)	Autonomous system	$(2 \operatorname{IIIaIKS})$
(ii)	Critical point of a system	(2 marks)
(iii)	Phase plane	(2 marks)

(b) An autonomous system has two Eigenvalue λ_1 and λ_2 , discuss the critical points in terms of nature and stability for

(i)	A linear system	(7 marks)
(ii)	Almost linear system	(7 marks)

QUESTION TWO (20 MARKS)

Consider the non-linear dynamical system

 $\dot{x} = x(1-x-2y)$ $\dot{y} = y(1-2x-y)$

(a)	Determine all the fixed points.	(5 marks)
(b)	Discuss the stability of the fixed points obtained in a.	(15 marks)

MATH 933

QUESTION THREE (20 MARKS)

(a)	Outlin	e the process of linearization of a non-linear system.	(3 marks)
(b)	For th	e non-linear dynamical system	
	$ \begin{aligned} \dot{x} &= -(x-y)(1-x-y) \\ \dot{y} &= x(2+y) \end{aligned} $		
	(i)	Linearize the system at all its equilibrium points.	(9 marks)
	(ii)	Classifying the equilibrium points.	(8 marks)
QUES	STION	FOUR (20 MARKS)	
(a)	Briefly explain the Mathematical meaning of the term almost linear system. (6 marks)		
(b)	Consider the system of equations		
	$\frac{dx}{dt} = x$		

$$\frac{dy}{dt} = -x + 2y$$

(i)	Verify that $(0,0)$ is a critical point of the system.	(3 marks)
(ii)	Show that the system is almost linear.	(3 marks)
(iii	Determine the Jacobian and then classify.	(8 marks)