

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

MATH 932: MATHEMATICAL EPIDEMIOLOGY

STREAMS:
TIME: 3 HOURS
DAY/DATE: WEDNESDAY 07/04/2021
2.30 P.M - 5.30 P.M

INSTRUCTIONS:
Answer Any Three Questions
QUESTION ONE.
a. Given that $S+l=N, S(0)=S_{0}, l(0)=I_{0}$, Solve the SI model below for I

$$
\begin{aligned}
& \frac{d S}{d t}=-\beta S I \\
& \frac{d I}{d t}=\beta S I
\end{aligned}
$$

b. A typhoid fever model is given as $\frac{d y}{d t}=-\beta y$ and $\frac{d x}{d t}=-\alpha x y$, where x and y respectively denote the proportion of susceptible and carriers in the population. Suppose that the carriers are identified and removed from the population at a rate ${ }^{\beta}$.
i. Determine the proportions of carriers at any time t, where $y(0)=y$.
ii. Use the result of part I above to find the susceptible at time t where $x(0)=x_{0}$
iii. Find the proportion of the population that escapes the epidemic.

QUESTION TWO

a. Given the competing species model as,

$$
\begin{aligned}
& \frac{d x}{d t}=r_{1} x-\alpha_{1} x y \\
& \frac{d y}{d t}=r_{2} y-\alpha_{2} x y
\end{aligned}
$$

Where ${ }^{\alpha_{1}}$ and ${ }^{\alpha_{2}}$ are two constants.
(i). obtain the solution for x in the absence of the second specie when $\mathrm{y}=0$
(ii). Obtain the non trivial steady state point of the system $\left(x^{*}, y^{*}\right)$
iii. Examine the stability of the steady state ${ }^{\left(x^{*}, y^{*}\right)}$ using the perturbation technique 10mks
iv. solve the competing model system in (2a) above analytically

QUESTION THREE

a. Derive the predator prey model and explain the assumptions from the model developed
b. Solve the predator prey model developed in (a) above stating the implications of the solutions obtained.
c. Obtain the equilibrium points of the system below.

$$
\begin{aligned}
& \frac{d x}{d t}=x-y+x y \\
& \frac{d y}{d t}=3 x-2 y-x y
\end{aligned}
$$

x - is the prey and y - is the predator. Verify that $(0,0)$ is a critical point of the system and discuss the type and stability of the critical point $(0,0)$

QUESTION FOUR

a. Solve the epidemic model given as $\frac{d x}{d t}=-x(n+1-x)$, where $x=n$ at $T=0, x(t)$ is the number of susceptible, ${ }^{y(t)}$ is the number of infectives. [5marks]
b. If the contact rate ${ }^{\beta=0.001}$ and the number of susceptible (n) is 2000 initially in 4 a above, determine
i. The number of susceptible left after 3 weeks
[3marks]
ii. The density of susceptible when the rate of appearance of new cases is maximum
[2marks]
iii. The time in weeks at which the rate of appearance of new cases is maximum
iv. The maximum rate of appearance of new cases
c. In the compartmental diagram given below, the transfers are made on a daily basis

Given that $\mathrm{x}(0)=[100,0,0]$, find the transfer matrix and state of the system over the next five days.
[5marks]

QUESTION FIVE

a. Derive the logistic growth model for a single specific population. Given the differential equation $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)$, , where K is the carrying capacity, $\mathrm{N}(\mathrm{t})$ is the number of individuals in a population at time t and r is the growth rate, solve for $N(t)$ [14marks]
b. Derive the Malthusian growth model and give its limitations [6marks]

