MATH 929

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

MATH 929: DISTSRIBUTIONS AND FOURIER ANALYSIS

STREAMS: PhD

TIME: 3 HOURS

DAY/DATE: WEDNESDAY 6/10/2021

8.30 A.M – 11.30 A.M

INSTRUCTIONS

INSTRUCTIONS

- Answer any three questions
- Adhere to the instructions on the answer booklet.

QUESTION ONE.

a. Solve the differential equation

[7marks]

the input signal $x(t) = e^{-t}u(t)$ and the initial conditions y(0) = 1, $\dot{y}(0) = 1$:

b. Solve the differential equation below by finite Fourier transforms [13 marks]

 $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \text{ given } u(0, t) = 0 \text{ and } u(4, t) = 0$ and u(x, 0) = 2x where 0 < x < 4, t > 0.

 $\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = x(t)$ given

QUESTION TWO

a. Obtain the general solution to the following system of differential equations by the Mikusinski's operator [10 marks]

 $x'(t) + y(t) = t^{2} + 6t + 1$ $y'(t) - x(t) = -3t^{2} + 3t + 1$ b. Given the ordinary differential equation

 $-u''(x) + q(x)u(x) = \lambda u(x)$ $\lambda \in \mathbb{C} \setminus \mathbb{R}$

 $u_1(0, \lambda) = 0$ and $u_2(0, \lambda) = 1$ $u'_1(0, \lambda) = 1$ $u'_2(0, \lambda) = 0$

With q = 0, Obtain

- i. The Titchmarsh-Weyl *m*-function [5marks]
- ii. Spectral transform and measure [5 marks]

QUESTION THREE

a. Solve the differential equation [7marks] $\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = x(t)$

Given the input signal

$$x(t) = e^t u(t)$$
 and the initial conditions $y(0) = 1$, $\dot{y}(0) = 1$

- b. Solve the differential equation below by Mikusinski's operator [7marks] $y'(t) + 2y(t) = 2(t+1)e^{t^2}$ with y(0) = 1.
- c. Obtain the solution to the integral equation

$$f(t) = \cos t - t - 2 - \int_{0}^{t} (t-\tau)f(\tau)d\tau.$$

QUESTION FOUR

a. Solve the heat equation below by Fourier sine transforms

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

under the conditions

(i)
$$u(0, t) = 0$$

(ii) $u(x, 0) = e^{-x}$
(iii) $u(x, t)$ is bounded.

[6 marks]

[15 marks]

b. Solve the differential equation below

$$\frac{d}{dt}f(t) + 2f(t) = 4(1 + a^2t) e^{a^2t^2}$$

given that f(0) = 3.

$$\frac{d}{dt}f(t) + 2f(t) = 4(1 + a^2t) e^{a^2t^2}$$

given that f(0) = 3.

QUESTION FIVE

a. Solve the transmission line equation below by Laplace transforms [20 marks] $\frac{\partial v}{\partial x} = -Ri$ $\frac{\partial i}{\partial x} = -c\frac{\partial v}{\partial t}$ Conditions are v (x, 0) = 0 i (x, 0) = 0 $v (0, t) = v_0$ v (x, t) finite for all x and t.

ION FIVE

[5 marks]